/- Copyright (c) 2015 Leonardo de Moura. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura Finite type (type class) -/ import data.list data.bool open list bool unit decidable option function structure fintype [class] (A : Type) : Type := (elems : list A) (unique : nodup elems) (complete : ∀ a, a ∈ elems) definition fintype_unit [instance] : fintype unit := fintype.mk [star] dec_trivial (λ u, match u with star := dec_trivial end) definition fintype_bool [instance] : fintype bool := fintype.mk [ff, tt] dec_trivial (λ b, match b with | tt := dec_trivial | ff := dec_trivial end) definition fintype_product [instance] {A B : Type} : Π [h₁ : fintype A] [h₂ : fintype B], fintype (A × B) | (fintype.mk e₁ u₁ c₁) (fintype.mk e₂ u₂ c₂) := fintype.mk (cross_product e₁ e₂) (nodup_cross_product u₁ u₂) (λ p, match p with (a, b) := mem_cross_product (c₁ a) (c₂ b) end) /- auxiliary function for finding 'a' s.t. f a ≠ g a -/ section find_discr variables {A B : Type} variable [h : decidable_eq B] include h definition find_discr (f g : A → B) : list A → option A | [] := none | (a::l) := if f a = g a then find_discr l else some a theorem find_discr_nil (f g : A → B) : find_discr f g [] = none := rfl theorem find_discr_cons_of_ne {f g : A → B} {a : A} (l : list A) : f a ≠ g a → find_discr f g (a::l) = some a := assume ne, if_neg ne theorem find_discr_cons_of_eq {f g : A → B} {a : A} (l : list A) : f a = g a → find_discr f g (a::l) = find_discr f g l := assume eq, if_pos eq theorem ne_of_find_discr_eq_some {f g : A → B} {a : A} : ∀ {l}, find_discr f g l = some a → f a ≠ g a | [] e := option.no_confusion e | (x::l) e := by_cases (λ h : f x = g x, have aux : find_discr f g l = some a, by rewrite [find_discr_cons_of_eq l h at e]; exact e, ne_of_find_discr_eq_some aux) (λ h : f x ≠ g x, have aux : some x = some a, by rewrite [find_discr_cons_of_ne l h at e]; exact e, option.no_confusion aux (λ xeqa : x = a, eq.rec_on xeqa h)) theorem all_eq_of_find_discr_eq_none {f g : A → B} : ∀ {l}, find_discr f g l = none → ∀ a, a ∈ l → f a = g a | [] e a i := absurd i !not_mem_nil | (x::l) e a i := by_cases (λ fx_eq_gx : f x = g x, have aux : find_discr f g l = none, by rewrite [find_discr_cons_of_eq l fx_eq_gx at e]; exact e, or.elim (eq_or_mem_of_mem_cons i) (λ aeqx : a = x, by rewrite [-aeqx at fx_eq_gx]; exact fx_eq_gx) (λ ainl : a ∈ l, all_eq_of_find_discr_eq_none aux a ainl)) (λ fx_ne_gx : f x ≠ g x, have aux : some x = none, by rewrite [find_discr_cons_of_ne l fx_ne_gx at e]; exact e, option.no_confusion aux) end find_discr definition decidable_eq_fun [instance] {A B : Type} [h₁ : fintype A] [h₂ : decidable_eq B] : decidable_eq (A → B) := λ f g, match h₁ with | fintype.mk e u c := match find_discr f g e with | some a := λ h : find_discr f g e = some a, inr (λ f_eq_g : f = g, absurd (by rewrite f_eq_g) (ne_of_find_discr_eq_some h)) | none := λ h : find_discr f g e = none, inl (show f = g, from funext (λ a : A, all_eq_of_find_discr_eq_none h a (c a))) end rfl end