/- Copyright (c) 2014 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn, Jeremy Avigad The order relation on the integers. We show that int is an instance of linear_comm_ordered_ring and transfer the results. -/ import .basic algebra.ordered_ring open nat open decidable open int eq.ops namespace int private definition nonneg (a : ℤ) : Prop := int.cases_on a (take n, true) (take n, false) protected definition le (a b : ℤ) : Prop := nonneg (b - a) definition int_has_le [instance] [reducible] [priority int.prio]: has_le int := has_le.mk int.le protected definition lt (a b : ℤ) : Prop := (a + 1) ≤ b definition int_has_lt [instance] [reducible] [priority int.prio]: has_lt int := has_lt.mk int.lt local attribute nonneg [reducible] private definition decidable_nonneg [instance] (a : ℤ) : decidable (nonneg a) := int.cases_on a _ _ definition decidable_le [instance] (a b : ℤ) : decidable (a ≤ b) := decidable_nonneg _ definition decidable_lt [instance] (a b : ℤ) : decidable (a < b) := decidable_nonneg _ private theorem nonneg.elim {a : ℤ} : nonneg a → ∃n : ℕ, a = n := int.cases_on a (take n H, exists.intro n rfl) (take n', false.elim) private theorem nonneg_or_nonneg_neg (a : ℤ) : nonneg a ∨ nonneg (-a) := int.cases_on a (take n, or.inl trivial) (take n, or.inr trivial) theorem le.intro {a b : ℤ} {n : ℕ} (H : a + n = b) : a ≤ b := have n = b - a, from eq_add_neg_of_add_eq (begin rewrite [add.comm, H] end), -- !add.comm ▸ H), show nonneg (b - a), from this ▸ trivial theorem le.elim {a b : ℤ} (H : a ≤ b) : ∃n : ℕ, a + n = b := obtain (n : ℕ) (H1 : b - a = n), from nonneg.elim H, exists.intro n (!add.comm ▸ iff.mpr !add_eq_iff_eq_add_neg (H1⁻¹)) protected theorem le_total (a b : ℤ) : a ≤ b ∨ b ≤ a := or.imp_right (assume H : nonneg (-(b - a)), have -(b - a) = a - b, from !neg_sub, show nonneg (a - b), from this ▸ H) (nonneg_or_nonneg_neg (b - a)) theorem of_nat_le_of_nat_of_le {m n : ℕ} (H : #nat m ≤ n) : of_nat m ≤ of_nat n := obtain (k : ℕ) (Hk : m + k = n), from nat.le.elim H, le.intro (Hk ▸ (of_nat_add m k)⁻¹) theorem le_of_of_nat_le_of_nat {m n : ℕ} (H : of_nat m ≤ of_nat n) : (#nat m ≤ n) := obtain (k : ℕ) (Hk : of_nat m + of_nat k = of_nat n), from le.elim H, have m + k = n, from of_nat.inj (of_nat_add m k ⬝ Hk), nat.le.intro this theorem of_nat_le_of_nat_iff (m n : ℕ) : of_nat m ≤ of_nat n ↔ m ≤ n := iff.intro le_of_of_nat_le_of_nat of_nat_le_of_nat_of_le theorem lt_add_succ (a : ℤ) (n : ℕ) : a < a + succ n := le.intro (show a + 1 + n = a + succ n, from calc a + 1 + n = a + (1 + n) : add.assoc ... = a + (n + 1) : by rewrite (int.add_comm 1 n) ... = a + succ n : rfl) theorem lt.intro {a b : ℤ} {n : ℕ} (H : a + succ n = b) : a < b := H ▸ lt_add_succ a n theorem lt.elim {a b : ℤ} (H : a < b) : ∃n : ℕ, a + succ n = b := obtain (n : ℕ) (Hn : a + 1 + n = b), from le.elim H, have a + succ n = b, from calc a + succ n = a + 1 + n : by rewrite [add.assoc, int.add_comm 1 n] ... = b : Hn, exists.intro n this theorem of_nat_lt_of_nat_iff (n m : ℕ) : of_nat n < of_nat m ↔ n < m := calc of_nat n < of_nat m ↔ of_nat n + 1 ≤ of_nat m : iff.refl ... ↔ of_nat (nat.succ n) ≤ of_nat m : of_nat_succ n ▸ !iff.refl ... ↔ nat.succ n ≤ m : of_nat_le_of_nat_iff ... ↔ n < m : iff.symm (lt_iff_succ_le _ _) theorem lt_of_of_nat_lt_of_nat {m n : ℕ} (H : of_nat m < of_nat n) : #nat m < n := iff.mp !of_nat_lt_of_nat_iff H theorem of_nat_lt_of_nat_of_lt {m n : ℕ} (H : #nat m < n) : of_nat m < of_nat n := iff.mpr !of_nat_lt_of_nat_iff H /- show that the integers form an ordered additive group -/ protected theorem le_refl (a : ℤ) : a ≤ a := le.intro (add_zero a) protected theorem le_trans {a b c : ℤ} (H1 : a ≤ b) (H2 : b ≤ c) : a ≤ c := obtain (n : ℕ) (Hn : a + n = b), from le.elim H1, obtain (m : ℕ) (Hm : b + m = c), from le.elim H2, have a + of_nat (n + m) = c, from calc a + of_nat (n + m) = a + (of_nat n + m) : {of_nat_add n m} ... = a + n + m : (add.assoc a n m)⁻¹ ... = b + m : {Hn} ... = c : Hm, le.intro this protected theorem le_antisymm : ∀ {a b : ℤ}, a ≤ b → b ≤ a → a = b := take a b : ℤ, assume (H₁ : a ≤ b) (H₂ : b ≤ a), obtain (n : ℕ) (Hn : a + n = b), from le.elim H₁, obtain (m : ℕ) (Hm : b + m = a), from le.elim H₂, have a + of_nat (n + m) = a + 0, from calc a + of_nat (n + m) = a + (of_nat n + m) : by rewrite of_nat_add ... = a + n + m : by rewrite add.assoc ... = b + m : by rewrite Hn ... = a : by rewrite Hm ... = a + 0 : by rewrite add_zero, have of_nat (n + m) = of_nat 0, from add.left_cancel this, have n + m = 0, from of_nat.inj this, assert n = 0, from nat.eq_zero_of_add_eq_zero_right this, show a = b, from calc a = a + 0 : add_zero ... = a + n : by rewrite this ... = b : Hn protected theorem lt_irrefl (a : ℤ) : ¬ a < a := (suppose a < a, obtain (n : ℕ) (Hn : a + succ n = a), from lt.elim this, have a + succ n = a + 0, from Hn ⬝ !add_zero⁻¹, !succ_ne_zero (of_nat.inj (add.left_cancel this))) protected theorem ne_of_lt {a b : ℤ} (H : a < b) : a ≠ b := (suppose a = b, absurd (this ▸ H) (int.lt_irrefl b)) theorem le_of_lt {a b : ℤ} (H : a < b) : a ≤ b := obtain (n : ℕ) (Hn : a + succ n = b), from lt.elim H, le.intro Hn protected theorem lt_iff_le_and_ne (a b : ℤ) : a < b ↔ (a ≤ b ∧ a ≠ b) := iff.intro (assume H, and.intro (le_of_lt H) (int.ne_of_lt H)) (assume H, have a ≤ b, from and.elim_left H, have a ≠ b, from and.elim_right H, obtain (n : ℕ) (Hn : a + n = b), from le.elim `a ≤ b`, have n ≠ 0, from (assume H' : n = 0, `a ≠ b` (!add_zero ▸ H' ▸ Hn)), obtain (k : ℕ) (Hk : n = nat.succ k), from nat.exists_eq_succ_of_ne_zero this, lt.intro (Hk ▸ Hn)) protected theorem le_iff_lt_or_eq (a b : ℤ) : a ≤ b ↔ (a < b ∨ a = b) := iff.intro (assume H, by_cases (suppose a = b, or.inr this) (suppose a ≠ b, obtain (n : ℕ) (Hn : a + n = b), from le.elim H, have n ≠ 0, from (assume H' : n = 0, `a ≠ b` (!add_zero ▸ H' ▸ Hn)), obtain (k : ℕ) (Hk : n = nat.succ k), from nat.exists_eq_succ_of_ne_zero this, or.inl (lt.intro (Hk ▸ Hn)))) (assume H, or.elim H (assume H1, le_of_lt H1) (assume H1, H1 ▸ !int.le_refl)) theorem lt_succ (a : ℤ) : a < a + 1 := int.le_refl (a + 1) protected theorem add_le_add_left {a b : ℤ} (H : a ≤ b) (c : ℤ) : c + a ≤ c + b := obtain (n : ℕ) (Hn : a + n = b), from le.elim H, have H2 : c + a + n = c + b, from calc c + a + n = c + (a + n) : add.assoc c a n ... = c + b : {Hn}, le.intro H2 protected theorem add_lt_add_left {a b : ℤ} (H : a < b) (c : ℤ) : c + a < c + b := let H' := le_of_lt H in (iff.mpr (int.lt_iff_le_and_ne _ _)) (and.intro (int.add_le_add_left H' _) (take Heq, let Heq' := add_left_cancel Heq in !int.lt_irrefl (Heq' ▸ H))) protected theorem mul_nonneg {a b : ℤ} (Ha : 0 ≤ a) (Hb : 0 ≤ b) : 0 ≤ a * b := obtain (n : ℕ) (Hn : 0 + n = a), from le.elim Ha, obtain (m : ℕ) (Hm : 0 + m = b), from le.elim Hb, le.intro (eq.symm (calc a * b = (0 + n) * b : by rewrite Hn ... = n * b : by rewrite zero_add ... = n * (0 + m) : by rewrite Hm ... = n * m : by rewrite zero_add ... = 0 + n * m : by rewrite zero_add)) protected theorem mul_pos {a b : ℤ} (Ha : 0 < a) (Hb : 0 < b) : 0 < a * b := obtain (n : ℕ) (Hn : 0 + nat.succ n = a), from lt.elim Ha, obtain (m : ℕ) (Hm : 0 + nat.succ m = b), from lt.elim Hb, lt.intro (eq.symm (calc a * b = (0 + nat.succ n) * b : by rewrite Hn ... = nat.succ n * b : by rewrite zero_add ... = nat.succ n * (0 + nat.succ m) : by rewrite Hm ... = nat.succ n * nat.succ m : by rewrite zero_add ... = of_nat (nat.succ n * nat.succ m) : by rewrite of_nat_mul ... = of_nat (nat.succ n * m + nat.succ n) : by rewrite nat.mul_succ ... = of_nat (nat.succ (nat.succ n * m + n)) : by rewrite nat.add_succ ... = 0 + nat.succ (nat.succ n * m + n) : by rewrite zero_add)) protected theorem zero_lt_one : (0 : ℤ) < 1 := trivial protected theorem not_le_of_gt {a b : ℤ} (H : a < b) : ¬ b ≤ a := assume Hba, let Heq := int.le_antisymm (le_of_lt H) Hba in !int.lt_irrefl (Heq ▸ H) protected theorem lt_of_lt_of_le {a b c : ℤ} (Hab : a < b) (Hbc : b ≤ c) : a < c := let Hab' := le_of_lt Hab in let Hac := int.le_trans Hab' Hbc in (iff.mpr !int.lt_iff_le_and_ne) (and.intro Hac (assume Heq, int.not_le_of_gt (Heq ▸ Hab) Hbc)) protected theorem lt_of_le_of_lt {a b c : ℤ} (Hab : a ≤ b) (Hbc : b < c) : a < c := let Hbc' := le_of_lt Hbc in let Hac := int.le_trans Hab Hbc' in (iff.mpr !int.lt_iff_le_and_ne) (and.intro Hac (assume Heq, int.not_le_of_gt (Heq⁻¹ ▸ Hbc) Hab)) protected definition linear_ordered_comm_ring [reducible] [trans_instance] : linear_ordered_comm_ring int := ⦃linear_ordered_comm_ring, int.integral_domain, le := int.le, le_refl := int.le_refl, le_trans := @int.le_trans, le_antisymm := @int.le_antisymm, lt := int.lt, le_of_lt := @int.le_of_lt, lt_irrefl := int.lt_irrefl, lt_of_lt_of_le := @int.lt_of_lt_of_le, lt_of_le_of_lt := @int.lt_of_le_of_lt, add_le_add_left := @int.add_le_add_left, mul_nonneg := @int.mul_nonneg, mul_pos := @int.mul_pos, le_iff_lt_or_eq := int.le_iff_lt_or_eq, le_total := int.le_total, zero_ne_one := int.zero_ne_one, zero_lt_one := int.zero_lt_one, add_lt_add_left := @int.add_lt_add_left⦄ protected definition decidable_linear_ordered_comm_ring [reducible] [instance] : decidable_linear_ordered_comm_ring int := ⦃decidable_linear_ordered_comm_ring, int.linear_ordered_comm_ring, decidable_lt := decidable_lt⦄ /- more facts specific to int -/ theorem of_nat_nonneg (n : ℕ) : 0 ≤ of_nat n := trivial theorem of_nat_pos {n : ℕ} (Hpos : #nat n > 0) : of_nat n > 0 := of_nat_lt_of_nat_of_lt Hpos theorem of_nat_succ_pos (n : nat) : of_nat (nat.succ n) > 0 := of_nat_pos !nat.succ_pos theorem exists_eq_of_nat {a : ℤ} (H : 0 ≤ a) : ∃n : ℕ, a = of_nat n := obtain (n : ℕ) (H1 : 0 + of_nat n = a), from le.elim H, exists.intro n (!zero_add ▸ (H1⁻¹)) theorem exists_eq_neg_of_nat {a : ℤ} (H : a ≤ 0) : ∃n : ℕ, a = -(of_nat n) := have -a ≥ 0, from iff.mpr !neg_nonneg_iff_nonpos H, obtain (n : ℕ) (Hn : -a = of_nat n), from exists_eq_of_nat this, exists.intro n (eq_neg_of_eq_neg (Hn⁻¹)) theorem of_nat_nat_abs_of_nonneg {a : ℤ} (H : a ≥ 0) : of_nat (nat_abs a) = a := obtain (n : ℕ) (Hn : a = of_nat n), from exists_eq_of_nat H, Hn⁻¹ ▸ congr_arg of_nat (nat_abs_of_nat n) theorem of_nat_nat_abs_of_nonpos {a : ℤ} (H : a ≤ 0) : of_nat (nat_abs a) = -a := have -a ≥ 0, from iff.mpr !neg_nonneg_iff_nonpos H, calc of_nat (nat_abs a) = of_nat (nat_abs (-a)) : nat_abs_neg ... = -a : of_nat_nat_abs_of_nonneg this theorem of_nat_nat_abs (b : ℤ) : nat_abs b = abs b := or.elim (le.total 0 b) (assume H : b ≥ 0, of_nat_nat_abs_of_nonneg H ⬝ (abs_of_nonneg H)⁻¹) (assume H : b ≤ 0, of_nat_nat_abs_of_nonpos H ⬝ (abs_of_nonpos H)⁻¹) theorem nat_abs_abs (a : ℤ) : nat_abs (abs a) = nat_abs a := abs.by_cases rfl !nat_abs_neg theorem lt_of_add_one_le {a b : ℤ} (H : a + 1 ≤ b) : a < b := obtain (n : nat) (H1 : a + 1 + n = b), from le.elim H, have a + succ n = b, by rewrite [-H1, add.assoc, add.comm 1], lt.intro this theorem add_one_le_of_lt {a b : ℤ} (H : a < b) : a + 1 ≤ b := obtain (n : nat) (H1 : a + succ n = b), from lt.elim H, have a + 1 + n = b, by rewrite [-H1, add.assoc, add.comm 1], le.intro this theorem lt_add_one_of_le {a b : ℤ} (H : a ≤ b) : a < b + 1 := lt_add_of_le_of_pos H trivial theorem le_of_lt_add_one {a b : ℤ} (H : a < b + 1) : a ≤ b := have H1 : a + 1 ≤ b + 1, from add_one_le_of_lt H, le_of_add_le_add_right H1 theorem sub_one_le_of_lt {a b : ℤ} (H : a ≤ b) : a - 1 < b := lt_of_add_one_le (begin rewrite sub_add_cancel, exact H end) theorem lt_of_sub_one_le {a b : ℤ} (H : a - 1 < b) : a ≤ b := !sub_add_cancel ▸ add_one_le_of_lt H theorem le_sub_one_of_lt {a b : ℤ} (H : a < b) : a ≤ b - 1 := le_of_lt_add_one begin rewrite sub_add_cancel, exact H end theorem lt_of_le_sub_one {a b : ℤ} (H : a ≤ b - 1) : a < b := !sub_add_cancel ▸ (lt_add_one_of_le H) theorem sign_of_succ (n : nat) : sign (nat.succ n) = 1 := sign_of_pos (of_nat_pos !nat.succ_pos) theorem exists_eq_neg_succ_of_nat {a : ℤ} : a < 0 → ∃m : ℕ, a = -[1+m] := int.cases_on a (take (m : nat) H, absurd (of_nat_nonneg m : 0 ≤ m) (not_le_of_gt H)) (take (m : nat) H, exists.intro m rfl) theorem eq_one_of_mul_eq_one_right {a b : ℤ} (H : a ≥ 0) (H' : a * b = 1) : a = 1 := have a * b > 0, by rewrite H'; apply trivial, have b > 0, from pos_of_mul_pos_left this H, have a > 0, from pos_of_mul_pos_right `a * b > 0` (le_of_lt `b > 0`), or.elim (le_or_gt a 1) (suppose a ≤ 1, show a = 1, from le.antisymm this (add_one_le_of_lt `a > 0`)) (suppose a > 1, assert a * b ≥ 2 * 1, from mul_le_mul (add_one_le_of_lt `a > 1`) (add_one_le_of_lt `b > 0`) trivial H, have false, by rewrite [H' at this]; exact this, false.elim this) theorem eq_one_of_mul_eq_one_left {a b : ℤ} (H : b ≥ 0) (H' : a * b = 1) : b = 1 := eq_one_of_mul_eq_one_right H (!mul.comm ▸ H') theorem eq_one_of_mul_eq_self_left {a b : ℤ} (Hpos : a ≠ 0) (H : b * a = a) : b = 1 := eq_of_mul_eq_mul_right Hpos (H ⬝ (one_mul a)⁻¹) theorem eq_one_of_mul_eq_self_right {a b : ℤ} (Hpos : b ≠ 0) (H : b * a = b) : a = 1 := eq_one_of_mul_eq_self_left Hpos (!mul.comm ▸ H) theorem eq_one_of_dvd_one {a : ℤ} (H : a ≥ 0) (H' : a ∣ 1) : a = 1 := dvd.elim H' (take b, suppose 1 = a * b, eq_one_of_mul_eq_one_right H this⁻¹) theorem exists_least_of_bdd {P : ℤ → Prop} [HP : decidable_pred P] (Hbdd : ∃ b : ℤ, ∀ z : ℤ, z ≤ b → ¬ P z) (Hinh : ∃ z : ℤ, P z) : ∃ lb : ℤ, P lb ∧ (∀ z : ℤ, z < lb → ¬ P z) := begin cases Hbdd with [b, Hb], cases Hinh with [elt, Helt], existsi b + of_nat (least (λ n, P (b + of_nat n)) (nat.succ (nat_abs (elt - b)))), have Heltb : elt > b, begin apply lt_of_not_ge, intro Hge, apply (Hb _ Hge) Helt end, have H' : P (b + of_nat (nat_abs (elt - b))), begin rewrite [of_nat_nat_abs_of_nonneg (int.le_of_lt (iff.mpr !sub_pos_iff_lt Heltb)), add.comm, sub_add_cancel], apply Helt end, apply and.intro, apply least_of_lt _ !lt_succ_self H', intros z Hz, cases em (z ≤ b) with [Hzb, Hzb], apply Hb _ Hzb, let Hzb' := lt_of_not_ge Hzb, let Hpos := iff.mpr !sub_pos_iff_lt Hzb', have Hzbk : z = b + of_nat (nat_abs (z - b)), by rewrite [of_nat_nat_abs_of_nonneg (int.le_of_lt Hpos), int.add_comm, sub_add_cancel], have Hk : nat_abs (z - b) < least (λ n, P (b + of_nat n)) (nat.succ (nat_abs (elt - b))), begin let Hz' := iff.mp !lt_add_iff_sub_lt_left Hz, rewrite [-of_nat_nat_abs_of_nonneg (int.le_of_lt Hpos) at Hz'], apply lt_of_of_nat_lt_of_nat Hz' end, let Hk' := not_le_of_gt Hk, rewrite Hzbk, apply λ p, mt (ge_least_of_lt _ p) Hk', apply nat.lt_trans Hk, apply least_lt _ !lt_succ_self H' end theorem exists_greatest_of_bdd {P : ℤ → Prop} [HP : decidable_pred P] (Hbdd : ∃ b : ℤ, ∀ z : ℤ, z ≥ b → ¬ P z) (Hinh : ∃ z : ℤ, P z) : ∃ ub : ℤ, P ub ∧ (∀ z : ℤ, z > ub → ¬ P z) := begin cases Hbdd with [b, Hb], cases Hinh with [elt, Helt], existsi b - of_nat (least (λ n, P (b - of_nat n)) (nat.succ (nat_abs (b - elt)))), have Heltb : elt < b, begin apply lt_of_not_ge, intro Hge, apply (Hb _ Hge) Helt end, have H' : P (b - of_nat (nat_abs (b - elt))), begin rewrite [of_nat_nat_abs_of_nonneg (int.le_of_lt (iff.mpr !sub_pos_iff_lt Heltb)), sub_sub_self], apply Helt end, apply and.intro, apply least_of_lt _ !lt_succ_self H', intros z Hz, cases em (z ≥ b) with [Hzb, Hzb], apply Hb _ Hzb, let Hzb' := lt_of_not_ge Hzb, let Hpos := iff.mpr !sub_pos_iff_lt Hzb', have Hzbk : z = b - of_nat (nat_abs (b - z)), by rewrite [of_nat_nat_abs_of_nonneg (int.le_of_lt Hpos), sub_sub_self], have Hk : nat_abs (b - z) < least (λ n, P (b - of_nat n)) (nat.succ (nat_abs (b - elt))), begin let Hz' := iff.mp !lt_add_iff_sub_lt_left (iff.mpr !lt_add_iff_sub_lt_right Hz), rewrite [-of_nat_nat_abs_of_nonneg (int.le_of_lt Hpos) at Hz'], apply lt_of_of_nat_lt_of_nat Hz' end, let Hk' := not_le_of_gt Hk, rewrite Hzbk, apply λ p, mt (ge_least_of_lt _ p) Hk', apply nat.lt_trans Hk, apply least_lt _ !lt_succ_self H' end end int