Set: pp::colors Set: pp::unicode Assumed: f Failed to solve ⊢ (?M::1 ≈ λ x : ℕ, x) ⊕ (?M::1 ≈ nat_to_int) ⊕ (?M::1 ≈ nat_to_real) (line: 4: pos: 8) Coercion for 10 Failed to solve ⊢ Bool ≺ ℕ Substitution ⊢ Bool ≺ ?M::0 (line: 4: pos: 6) Type of argument 3 must be convertible to the expected type in the application of f::explicit with arguments: ?M::0 ?M::1 10 ⊤ Assignment ⊢ ℕ ≺ ?M::0 Substitution ⊢ ?M::5[inst:0 (10)] ≺ ?M::0 (line: 4: pos: 6) Type of argument 2 must be convertible to the expected type in the application of f::explicit with arguments: ?M::0 ?M::1 10 ⊤ Assignment x : ℕ ⊢ ℕ ≈ ?M::5 Destruct/Decompose ⊢ ℕ → ℕ ≈ Π x : ?M::4, ?M::5 Substitution ⊢ ?M::3 ≈ Π x : ?M::4, ?M::5 Function expected at ?M::1 10 Assignment ⊢ ℕ → ℕ ≺ ?M::3 Propagate type, ?M::1 : ?M::3 Assignment ⊢ ?M::1 ≈ λ x : ℕ, x Assumption 0 Failed to solve ⊢ Bool ≺ ℤ Substitution ⊢ Bool ≺ ?M::0 (line: 4: pos: 6) Type of argument 3 must be convertible to the expected type in the application of f::explicit with arguments: ?M::0 ?M::1 10 ⊤ Assignment ⊢ ℤ ≺ ?M::0 Substitution ⊢ ?M::5[inst:0 (10)] ≺ ?M::0 (line: 4: pos: 6) Type of argument 2 must be convertible to the expected type in the application of f::explicit with arguments: ?M::0 ?M::1 10 ⊤ Assignment a : ℕ ⊢ ℤ ≈ ?M::5 Destruct/Decompose ⊢ ℕ → ℤ ≈ Π x : ?M::4, ?M::5 Substitution ⊢ ?M::3 ≈ Π x : ?M::4, ?M::5 Function expected at ?M::1 10 Assignment ⊢ ℕ → ℤ ≺ ?M::3 Propagate type, ?M::1 : ?M::3 Assignment ⊢ ?M::1 ≈ nat_to_int Assumption 1 Failed to solve ⊢ Bool ≺ ℝ Substitution ⊢ Bool ≺ ?M::0 (line: 4: pos: 6) Type of argument 3 must be convertible to the expected type in the application of f::explicit with arguments: ?M::0 ?M::1 10 ⊤ Assignment ⊢ ℝ ≺ ?M::0 Substitution ⊢ ?M::5[inst:0 (10)] ≺ ?M::0 (line: 4: pos: 6) Type of argument 2 must be convertible to the expected type in the application of f::explicit with arguments: ?M::0 ?M::1 10 ⊤ Assignment a : ℕ ⊢ ℝ ≈ ?M::5 Destruct/Decompose ⊢ ℕ → ℝ ≈ Π x : ?M::4, ?M::5 Substitution ⊢ ?M::3 ≈ Π x : ?M::4, ?M::5 Function expected at ?M::1 10 Assignment ⊢ ℕ → ℝ ≺ ?M::3 Propagate type, ?M::1 : ?M::3 Assignment ⊢ ?M::1 ≈ nat_to_real Assumption 2 Assumed: g Error (line: 7, pos: 8) unexpected metavariable occurrence Assumed: h Failed to solve x : ?M::0, A : Type ⊢ ?M::0 ≺ A (line: 11: pos: 27) Type of argument 2 must be convertible to the expected type in the application of h with arguments: A x Assumed: my_eq Failed to solve A : Type, B : Type, a : ?M::0, b : ?M::1, C : Type ⊢ ?M::0[lift:0:3] ≺ C (line: 15: pos: 51) Type of argument 2 must be convertible to the expected type in the application of my_eq with arguments: C a b Assumed: a Assumed: b Assumed: H Failed to solve ⊢ ?M::0 ⇒ ?M::3 ∧ a ≺ b Substitution ⊢ ?M::0 ⇒ ?M::1 ≺ b (line: 20: pos: 18) Type of definition 't1' must be convertible to expected type. Assignment H1 : ?M::2 ⊢ ?M::3 ∧ a ≺ ?M::1 Substitution H1 : ?M::2 ⊢ ?M::3 ∧ ?M::4 ≺ ?M::1 Destruct/Decompose ⊢ Π H1 : ?M::2, ?M::3 ∧ ?M::4 ≺ Π a : ?M::0, ?M::1 (line: 20: pos: 18) Type of argument 3 must be convertible to the expected type in the application of Discharge::explicit with arguments: ?M::0 ?M::1 λ H1 : ?M::2, Conj H1 (Conjunct1 H) Assignment H1 : ?M::2 ⊢ a ≺ ?M::4 Substitution H1 : ?M::2 ⊢ ?M::5 ≺ ?M::4 (line: 20: pos: 37) Type of argument 4 must be convertible to the expected type in the application of Conj::explicit with arguments: ?M::3 ?M::4 H1 Conjunct1 H Assignment H1 : ?M::2 ⊢ a ≈ ?M::5 Destruct/Decompose H1 : ?M::2 ⊢ a ∧ b ≺ ?M::5 ∧ ?M::6 (line: 20: pos: 45) Type of argument 3 must be convertible to the expected type in the application of Conjunct1::explicit with arguments: ?M::5 ?M::6 H Failed to solve ⊢ b ≈ a Substitution ⊢ b ≈ ?M::3 Destruct/Decompose ⊢ b == b ≺ ?M::3 == ?M::4 (line: 22: pos: 22) Type of argument 6 must be convertible to the expected type in the application of Trans::explicit with arguments: ?M::1 ?M::2 ?M::3 ?M::4 Refl a Refl b Assignment ⊢ a ≈ ?M::3 Destruct/Decompose ⊢ a == a ≺ ?M::2 == ?M::3 (line: 22: pos: 22) Type of argument 5 must be convertible to the expected type in the application of Trans::explicit with arguments: ?M::1 ?M::2 ?M::3 ?M::4 Refl a Refl b Failed to solve ⊢ (?M::1 ≈ Type) ⊕ (?M::1 ≈ Bool) Destruct/Decompose ⊢ ?M::1 ≺ Type (line: 24: pos: 6) Type of argument 1 must be convertible to the expected type in the application of f::explicit with arguments: ?M::0 Bool Bool Failed to solve ⊢ (?M::0 ≈ Type) ⊕ (?M::0 ≈ (Type 1)) ⊕ (?M::0 ≈ (Type 2)) ⊕ (?M::0 ≈ (Type M)) ⊕ (?M::0 ≈ (Type U)) Destruct/Decompose ⊢ Type ≺ ?M::0 (line: 24: pos: 6) Type of argument 2 must be convertible to the expected type in the application of f::explicit with arguments: ?M::0 Bool Bool Failed to solve ⊢ (Type 1) ≺ Type Substitution ⊢ (Type 1) ≺ ?M::1 Propagate type, ?M::0 : ?M::1 Assignment ⊢ ?M::0 ≈ Type Assumption 1 Assignment ⊢ ?M::1 ≈ Type Assumption 0 Failed to solve ⊢ (Type 2) ≺ Type Substitution ⊢ (Type 2) ≺ ?M::1 Propagate type, ?M::0 : ?M::1 Assignment ⊢ ?M::0 ≈ (Type 1) Assumption 2 Assignment ⊢ ?M::1 ≈ Type Assumption 0 Failed to solve ⊢ (Type 3) ≺ Type Substitution ⊢ (Type 3) ≺ ?M::1 Propagate type, ?M::0 : ?M::1 Assignment ⊢ ?M::0 ≈ (Type 2) Assumption 3 Assignment ⊢ ?M::1 ≈ Type Assumption 0 Failed to solve ⊢ (Type M+1) ≺ Type Substitution ⊢ (Type M+1) ≺ ?M::1 Propagate type, ?M::0 : ?M::1 Assignment ⊢ ?M::0 ≈ (Type M) Assumption 4 Assignment ⊢ ?M::1 ≈ Type Assumption 0 Failed to solve ⊢ (Type U+1) ≺ Type Substitution ⊢ (Type U+1) ≺ ?M::1 Propagate type, ?M::0 : ?M::1 Assignment ⊢ ?M::0 ≈ (Type U) Assumption 5 Assignment ⊢ ?M::1 ≈ Type Assumption 0 Failed to solve ⊢ (?M::0 ≈ Type) ⊕ (?M::0 ≈ (Type 1)) ⊕ (?M::0 ≈ (Type 2)) ⊕ (?M::0 ≈ (Type M)) ⊕ (?M::0 ≈ (Type U)) Destruct/Decompose ⊢ Type ≺ ?M::0 (line: 24: pos: 6) Type of argument 2 must be convertible to the expected type in the application of f::explicit with arguments: ?M::0 Bool Bool Failed to solve ⊢ (Type 1) ≺ Bool Substitution ⊢ (Type 1) ≺ ?M::1 Propagate type, ?M::0 : ?M::1 Assignment ⊢ ?M::0 ≈ Type Assumption 7 Assignment ⊢ ?M::1 ≈ Bool Assumption 6 Failed to solve ⊢ (Type 2) ≺ Bool Substitution ⊢ (Type 2) ≺ ?M::1 Propagate type, ?M::0 : ?M::1 Assignment ⊢ ?M::0 ≈ (Type 1) Assumption 8 Assignment ⊢ ?M::1 ≈ Bool Assumption 6 Failed to solve ⊢ (Type 3) ≺ Bool Substitution ⊢ (Type 3) ≺ ?M::1 Propagate type, ?M::0 : ?M::1 Assignment ⊢ ?M::0 ≈ (Type 2) Assumption 9 Assignment ⊢ ?M::1 ≈ Bool Assumption 6 Failed to solve ⊢ (Type M+1) ≺ Bool Substitution ⊢ (Type M+1) ≺ ?M::1 Propagate type, ?M::0 : ?M::1 Assignment ⊢ ?M::0 ≈ (Type M) Assumption 10 Assignment ⊢ ?M::1 ≈ Bool Assumption 6 Failed to solve ⊢ (Type U+1) ≺ Bool Substitution ⊢ (Type U+1) ≺ ?M::1 Propagate type, ?M::0 : ?M::1 Assignment ⊢ ?M::0 ≈ (Type U) Assumption 11 Assignment ⊢ ?M::1 ≈ Bool Assumption 6 Failed to solve a : Bool, b : Bool, H : ?M::2, H_a : ?M::6 ⊢ (a ⇒ b) ⇒ a ≺ a Substitution a : Bool, b : Bool, H : ?M::2, H_a : ?M::6 ⊢ (a ⇒ b) ⇒ a ≺ ?M::5[lift:0:1] Substitution a : Bool, b : Bool, H : ?M::2, H_a : ?M::6 ⊢ ?M::2[lift:0:2] ≺ ?M::5[lift:0:1] Destruct/Decompose a : Bool, b : Bool, H : ?M::2 ⊢ Π H_a : ?M::6, ?M::2[lift:0:2] ≺ Π a : ?M::3, ?M::5[lift:0:1] (line: 27: pos: 21) Type of argument 5 must be convertible to the expected type in the application of DisjCases::explicit with arguments: ?M::3 ?M::4 ?M::5 EM a λ H_a : ?M::6, H λ H_na : ?M::7, NotImp1 (MT H H_na) Normalize assignment ?M::0 Assignment a : Bool, b : Bool ⊢ ?M::2 ≈ ?M::0 Destruct/Decompose a : Bool, b : Bool ⊢ Π H : ?M::2, ?M::5 ≺ Π a : ?M::0, ?M::1[lift:0:1] (line: 27: pos: 4) Type of argument 3 must be convertible to the expected type in the application of Discharge::explicit with arguments: ?M::0 ?M::1 λ H : ?M::2, DisjCases (EM a) (λ H_a : ?M::6, H) (λ H_na : ?M::7, NotImp1 (MT H H_na)) Assignment a : Bool, b : Bool ⊢ ?M::0 ≈ (a ⇒ b) ⇒ a Destruct/Decompose a : Bool, b : Bool ⊢ ?M::0 ⇒ ?M::1 ≺ ((a ⇒ b) ⇒ a) ⇒ a Destruct/Decompose a : Bool ⊢ Π b : Bool, ?M::0 ⇒ ?M::1 ≺ Π b : Bool, ((a ⇒ b) ⇒ a) ⇒ a Destruct/Decompose ⊢ Π a b : Bool, ?M::0 ⇒ ?M::1 ≺ Π a b : Bool, ((a ⇒ b) ⇒ a) ⇒ a (line: 26: pos: 16) Type of definition 'pierce' must be convertible to expected type. Assignment a : Bool, b : Bool, H : ?M::2 ⊢ ?M::5 ≺ a Substitution a : Bool, b : Bool, H : ?M::2 ⊢ ?M::5 ≺ ?M::1[lift:0:1] Destruct/Decompose a : Bool, b : Bool ⊢ Π H : ?M::2, ?M::5 ≺ Π a : ?M::0, ?M::1[lift:0:1] (line: 27: pos: 4) Type of argument 3 must be convertible to the expected type in the application of Discharge::explicit with arguments: ?M::0 ?M::1 λ H : ?M::2, DisjCases (EM a) (λ H_a : ?M::6, H) (λ H_na : ?M::7, NotImp1 (MT H H_na)) Assignment a : Bool, b : Bool ⊢ ?M::1 ≈ a Destruct/Decompose a : Bool, b : Bool ⊢ ?M::0 ⇒ ?M::1 ≺ ((a ⇒ b) ⇒ a) ⇒ a Destruct/Decompose a : Bool ⊢ Π b : Bool, ?M::0 ⇒ ?M::1 ≺ Π b : Bool, ((a ⇒ b) ⇒ a) ⇒ a Destruct/Decompose ⊢ Π a b : Bool, ?M::0 ⇒ ?M::1 ≺ Π a b : Bool, ((a ⇒ b) ⇒ a) ⇒ a (line: 26: pos: 16) Type of definition 'pierce' must be convertible to expected type.