Variable N : Type Variable h : N -> N -> N Theorem CongrH {a1 a2 b1 b2 : N} (H1 : a1 = b1) (H2 : a2 = b2) : (h a1 a2) = (h b1 b2) := Congr (Congr (Refl h) H1) H2 (* Display the theorem showing implicit arguments *) SetOption lean::pp::implicit true Show Environment 2 (* Display the theorem hiding implicit arguments *) SetOption lean::pp::implicit false Show Environment 2 Theorem Example1 (a b c d : N) (H: (a = b ∧ b = c) ∨ (a = d ∧ d = c)) : (h a b) = (h c b) := DisjCases H (fun H1 : a = b ∧ b = c, CongrH (Trans (Conjunct1 H1) (Conjunct2 H1)) (Refl b)) (fun H1 : a = d ∧ d = c, CongrH (Trans (Conjunct1 H1) (Conjunct2 H1)) (Refl b)) (* Show proof of the last theorem with all implicit arguments *) SetOption lean::pp::implicit true Show Environment 1 (* Using placeholders to hide the type of H1 *) Theorem Example2 (a b c d : N) (H: (a = b ∧ b = c) ∨ (a = d ∧ d = c)) : (h a b) = (h c b) := DisjCases H (fun H1 : _, CongrH (Trans (Conjunct1 H1) (Conjunct2 H1)) (Refl b)) (fun H1 : _, CongrH (Trans (Conjunct1 H1) (Conjunct2 H1)) (Refl b)) SetOption lean::pp::implicit true Show Environment 1 (* Same example but the first conjuct has unnecessary stuff *) Theorem Example3 (a b c d e : N) (H: (a = b ∧ b = e ∧ b = c) ∨ (a = d ∧ d = c)) : (h a b) = (h c b) := DisjCases H (fun H1 : _, CongrH (Trans (Conjunct1 H1) (Conjunct2 (Conjunct2 H1))) (Refl b)) (fun H1 : _, CongrH (Trans (Conjunct1 H1) (Conjunct2 H1)) (Refl b)) SetOption lean::pp::implicit false Show Environment 1 Theorem Example4 (a b c d e : N) (H: (a = b ∧ b = e ∧ b = c) ∨ (a = d ∧ d = c)) : (h a c) = (h c a) := DisjCases H (fun H1 : _, let AeqC := Trans (Conjunct1 H1) (Conjunct2 (Conjunct2 H1)) in CongrH AeqC (Symm AeqC)) (fun H1 : _, let AeqC := Trans (Conjunct1 H1) (Conjunct2 H1) in CongrH AeqC (Symm AeqC)) SetOption lean::pp::implicit false Show Environment 1