/* Copyright (c) 2013 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura */ #include #include #include #include #include #include "environment.h" #include "safe_arith.h" #include "type_check.h" #include "exception.h" #include "pp.h" #include "debug.h" namespace lean { constexpr unsigned uninit = std::numeric_limits::max(); environment::definition::definition(name const & n, expr const & t, expr const & v, bool opaque): m_name(n), m_type(t), m_value(v), m_opaque(opaque) { } environment::definition::~definition() { } void environment::definition::display(std::ostream & out) const { out << header() << " " << m_name << " : " << m_type << " := " << m_value << "\n"; } format pp_object_kind(char const * n) { return highlight(format(n), format::format_color::BLUE); } constexpr unsigned indentation = 2; // TODO: must be option format environment::definition::pp(environment const & env) const { return nest(indentation, format{pp_object_kind(header()), format(" "), format(m_name), format(" : "), ::lean::pp(m_type, env), format(" :="), line(), ::lean::pp(m_value), format(".")}); } environment::fact::fact(name const & n, expr const & t): m_name(n), m_type(t) { } environment::fact::~fact() { } format environment::fact::pp(environment const & env) const { return nest(indentation, format{pp_object_kind(header()), format(" "), format(m_name), format(" : "), ::lean::pp(m_type, env), format(".")}); } void environment::fact::display(std::ostream & out) const { out << header() << " " << m_name << " : " << m_type << "\n"; } /** \brief Implementation of the Lean environment. */ struct environment::imp { typedef std::unordered_map object_dictionary; typedef std::tuple constraint; // Universe variable management std::vector m_constraints; std::vector m_uvars; // Children environment management std::atomic m_num_children; std::shared_ptr m_parent; // Object management std::vector m_objects; object_dictionary m_object_dictionary; bool has_children() const { return m_num_children > 0; } void inc_children() { m_num_children++; } void dec_children() { m_num_children--; } bool has_parent() const { return m_parent != nullptr; } /** \brief Return true if l1 >= l2 + k is implied by constraints \pre is_uvar(l1) && is_uvar(l2) */ bool is_implied(level const & l1, level const & l2, int k) { lean_assert(is_uvar(l1) && is_uvar(l2)); if (l1 == l2) return k <= 0; else return std::any_of(m_constraints.begin(), m_constraints.end(), [&](constraint const & c) { return std::get<0>(c) == l1 && std::get<1>(c) == l2 && std::get<2>(c) >= k; }); } /** \brief Return true iff l1 >= l2 + k */ bool is_ge(level const & l1, level const & l2, int k) { if (l1 == l2) return k == 0; switch (kind(l2)) { case level_kind::UVar: switch (kind(l1)) { case level_kind::UVar: return is_implied(l1, l2, k); case level_kind::Lift: return is_ge(lift_of(l1), l2, safe_sub(k, lift_offset(l1))); case level_kind::Max: return std::any_of(max_begin_levels(l1), max_end_levels(l1), [&](level const & l) { return is_ge(l, l2, k); }); } case level_kind::Lift: return is_ge(l1, lift_of(l2), safe_add(k, lift_offset(l2))); case level_kind::Max: return std::all_of(max_begin_levels(l2), max_end_levels(l2), [&](level const & l) { return is_ge(l1, l, k); }); } lean_unreachable(); return false; } bool is_ge(level const & l1, level const & l2) { if (has_parent()) return m_parent->is_ge(l1, l2); else return is_ge(l1, l2, 0); } level add_var(name const & n) { if (std::any_of(m_uvars.begin(), m_uvars.end(), [&](level const & l){ return uvar_name(l) == n; })) throw exception("invalid universe variable declaration, it has already been declared"); level r(n); m_uvars.push_back(r); return r; } void add_constraint(level const & l1, level const & l2, int d) { if (is_implied(l1, l2, d)) return; // redundant buffer to_add; for (constraint const & c : m_constraints) { if (std::get<0>(c) == l2) { level const & l3 = std::get<1>(c); int l1_l3_d = safe_add(d, std::get<2>(c)); if (!is_implied(l1, l3, l1_l3_d)) to_add.push_back(constraint(l1, l3, l1_l3_d)); } } m_constraints.push_back(constraint(l1, l2, d)); for (constraint const & c: to_add) { m_constraints.push_back(c); } } void add_constraints(level const & n, level const & l, int k) { lean_assert(is_uvar(n)); switch (kind(l)) { case level_kind::UVar: add_constraint(n, l, k); return; case level_kind::Lift: add_constraints(n, lift_of(l), safe_add(k, lift_offset(l))); return; case level_kind::Max: std::for_each(max_begin_levels(l), max_end_levels(l), [&](level const & l1) { add_constraints(n, l1, k); }); return; } lean_unreachable(); } level define_uvar(name const & n, level const & l) { if (has_parent()) throw exception("invalid universe declaration, universe variables can only be declared in top-level environments"); if (has_children()) throw exception("invalid universe declaration, environment has children environments"); level r = add_var(n); add_constraints(r, l, 0); return r; } level get_uvar(name const & n) const { if (has_parent()) { return m_parent->get_uvar(n); } else { auto it = std::find_if(m_uvars.begin(), m_uvars.end(), [&](level const & l) { return uvar_name(l) == n; }); if (it == m_uvars.end()) { std::ostringstream s; s << "unknown universe variable '" << n << "'"; throw exception (s.str()); } else { return *it; } } } void init_uvars() { m_uvars.push_back(level()); } void display_uvars(std::ostream & out) const { for (constraint const & c : m_constraints) { out << uvar_name(std::get<0>(c)) << " >= " << uvar_name(std::get<1>(c)); if (std::get<2>(c) >= 0) out << " + " << std::get<2>(c); out << "\n"; } } void check_no_children() { if (has_children()) throw exception("invalid object declaration, environment has children environments"); } void check_name(name const & n) { if (m_object_dictionary.find(n) != m_object_dictionary.end()) { std::ostringstream s; s << "environment already contains an object with name '" << n << "'"; throw exception (s.str()); } } void check_add(name const & n) { check_no_children(); check_name(n); } void add_definition(name const & n, expr const & t, expr const & v, bool opaque) { m_objects.push_back(new definition(n, t, v, opaque)); m_object_dictionary.insert(std::make_pair(n, m_objects.back())); } void add_theorem(name const & n, expr const & t, expr const & v) { m_objects.push_back(new theorem(n, t, v)); m_object_dictionary.insert(std::make_pair(n, m_objects.back())); } void add_axiom(name const & n, expr const & t) { m_objects.push_back(new axiom(n, t)); m_object_dictionary.insert(std::make_pair(n, m_objects.back())); } void add_var(name const & n, expr const & t) { m_objects.push_back(new variable(n, t)); m_object_dictionary.insert(std::make_pair(n, m_objects.back())); } object const * get_object_ptr(name const & n) const { auto it = m_object_dictionary.find(n); if (it == m_object_dictionary.end()) { if (has_parent()) return m_parent->get_object_ptr(n); else return nullptr; } else { return it->second; } } object const & get_object(name const & n) const { object const * ptr = get_object_ptr(n); if (ptr) { return *ptr; } else { std::ostringstream s; s << "unknown object '" << n << "'"; throw exception (s.str()); } } void display_objects(std::ostream & out, environment const & env) const { for (object const * obj : m_objects) { out << obj->pp(env) << "\n"; } } /** \brief Display universal variable constraints and objects stored in this environment and its parents. */ void display(std::ostream & out, environment const & env) const { if (has_parent()) m_parent->display(out, env); display_uvars(out); display_objects(out, env); } imp(): m_num_children(0) { init_uvars(); } explicit imp(std::shared_ptr const & parent): m_num_children(0), m_parent(parent) { m_parent->inc_children(); } ~imp() { if (m_parent) m_parent->dec_children(); std::for_each(m_objects.begin(), m_objects.end(), [](object * obj) { delete obj; }); } }; environment::environment(): m_imp(new imp()) { } environment::environment(imp * new_ptr): m_imp(new_ptr) { } environment::environment(std::shared_ptr const & ptr): m_imp(ptr) { } environment::~environment() { } level environment::define_uvar(name const & n, level const & l) { return m_imp->define_uvar(n, l); } bool environment::is_ge(level const & l1, level const & l2) const { return m_imp->is_ge(l1, l2); } void environment::display_uvars(std::ostream & out) const { m_imp->display_uvars(out); } environment environment::mk_child() const { return environment(new imp(m_imp)); } bool environment::has_children() const { return m_imp->has_children(); } bool environment::has_parent() const { return m_imp->has_parent(); } environment environment::parent() const { lean_assert(has_parent()); return environment(m_imp->m_parent); } level environment::get_uvar(name const & n) const { return m_imp->get_uvar(n); } void environment::check_type(name const & n, expr const & t, expr const & v) { infer_universe(t, *this); expr v_t = infer_type(v, *this); if (!is_convertible(t, v_t, *this)) { std::ostringstream buffer; buffer << "type mismatch when defining '" << n << "'\n" << "expected type:\n" << t << "\n" << "given type:\n" << v_t; throw exception(buffer.str()); } } void environment::add_definition(name const & n, expr const & t, expr const & v, bool opaque) { m_imp->check_no_children(); m_imp->check_name(n); check_type(n, t, v); m_imp->add_definition(n, t, v, opaque); } void environment::add_theorem(name const & n, expr const & t, expr const & v) { m_imp->check_no_children(); m_imp->check_name(n); check_type(n, t, v); m_imp->add_theorem(n, t, v); } void environment::add_definition(name const & n, expr const & v, bool opaque) { m_imp->check_add(n); expr v_t = infer_type(v, *this); m_imp->add_definition(n, v_t, v, opaque); } void environment::add_axiom(name const & n, expr const & t) { m_imp->check_add(n); infer_universe(t, *this); m_imp->add_axiom(n, t); } void environment::add_var(name const & n, expr const & t) { m_imp->check_add(n); infer_universe(t, *this); m_imp->add_var(n, t); } environment::object const & environment::get_object(name const & n) const { return m_imp->get_object(n); } environment::object const * environment::get_object_ptr(name const & n) const { return m_imp->get_object_ptr(n); } void environment::display_objects(std::ostream & out) const { m_imp->display_objects(out, *this); } void environment::display(std::ostream & out) const { m_imp->display(out, *this); } }