--- Copyright (c) 2014 Floris van Doorn. All rights reserved. --- Released under Apache 2.0 license as described in the file LICENSE. --- Author: Floris van Doorn -- data.nat.order -- ============== -- -- The ordering on the natural numbers import .basic logic.core.decidable import tools.fake_simplifier open nat eq_ops tactic open fake_simplifier namespace nat -- Less than or equal -- ------------------ definition le (n m : ℕ) : Prop := exists k : nat, n + k = m infix `<=` := le infix `≤` := le theorem le_intro {n m k : ℕ} (H : n + k = m) : n ≤ m := exists_intro k H theorem le_elim {n m : ℕ} (H : n ≤ m) : ∃k, n + k = m := H reducible [off] le -- ### partial order (totality is part of less than) theorem le_refl {n : ℕ} : n ≤ n := le_intro add_zero_right theorem zero_le {n : ℕ} : 0 ≤ n := le_intro add_zero_left theorem le_zero {n : ℕ} (H : n ≤ 0) : n = 0 := obtain (k : ℕ) (Hk : n + k = 0), from le_elim H, add_eq_zero_left Hk theorem not_succ_zero_le {n : ℕ} : ¬ succ n ≤ 0 := not_intro (assume H : succ n ≤ 0, have H2 : succ n = 0, from le_zero H, absurd H2 succ_ne_zero) theorem le_trans {n m k : ℕ} (H1 : n ≤ m) (H2 : m ≤ k) : n ≤ k := obtain (l1 : ℕ) (Hl1 : n + l1 = m), from le_elim H1, obtain (l2 : ℕ) (Hl2 : m + l2 = k), from le_elim H2, le_intro (calc n + (l1 + l2) = n + l1 + l2 : add_assoc⁻¹ ... = m + l2 : {Hl1} ... = k : Hl2) theorem le_antisym {n m : ℕ} (H1 : n ≤ m) (H2 : m ≤ n) : n = m := obtain (k : ℕ) (Hk : n + k = m), from (le_elim H1), obtain (l : ℕ) (Hl : m + l = n), from (le_elim H2), have L1 : k + l = 0, from add_cancel_left (calc n + (k + l) = n + k + l : add_assoc⁻¹ ... = m + l : {Hk} ... = n : Hl ... = n + 0 : add_zero_right⁻¹), have L2 : k = 0, from add_eq_zero_left L1, calc n = n + 0 : add_zero_right⁻¹ ... = n + k : {L2⁻¹} ... = m : Hk -- ### interaction with addition theorem le_add_right {n m : ℕ} : n ≤ n + m := le_intro rfl theorem le_add_left {n m : ℕ} : n ≤ m + n := le_intro add_comm theorem add_le_left {n m : ℕ} (H : n ≤ m) (k : ℕ) : k + n ≤ k + m := obtain (l : ℕ) (Hl : n + l = m), from (le_elim H), le_intro (calc k + n + l = k + (n + l) : add_assoc ... = k + m : {Hl}) theorem add_le_right {n m : ℕ} (H : n ≤ m) (k : ℕ) : n + k ≤ m + k := add_comm ▸ add_comm ▸ add_le_left H k theorem add_le {n m k l : ℕ} (H1 : n ≤ k) (H2 : m ≤ l) : n + m ≤ k + l := le_trans (add_le_right H1 m) (add_le_left H2 k) theorem add_le_cancel_left {n m k : ℕ} (H : k + n ≤ k + m) : n ≤ m := obtain (l : ℕ) (Hl : k + n + l = k + m), from (le_elim H), le_intro (add_cancel_left (calc k + (n + l) = k + n + l : add_assoc⁻¹ ... = k + m : Hl)) theorem add_le_cancel_right {n m k : ℕ} (H : n + k ≤ m + k) : n ≤ m := add_le_cancel_left (add_comm ▸ add_comm ▸ H) theorem add_le_inv {n m k l : ℕ} (H1 : n + m ≤ k + l) (H2 : k ≤ n) : m ≤ l := obtain (a : ℕ) (Ha : k + a = n), from le_elim H2, have H3 : k + (a + m) ≤ k + l, from add_assoc ▸ Ha⁻¹ ▸ H1, have H4 : a + m ≤ l, from add_le_cancel_left H3, show m ≤ l, from le_trans le_add_left H4 -- add_rewrite le_add_right le_add_left -- ### interaction with successor and predecessor theorem succ_le {n m : ℕ} (H : n ≤ m) : succ n ≤ succ m := add_one ▸ add_one ▸ add_le_right H 1 theorem succ_le_cancel {n m : ℕ} (H : succ n ≤ succ m) : n ≤ m := add_le_cancel_right (add_one⁻¹ ▸ add_one⁻¹ ▸ H) theorem self_le_succ {n : ℕ} : n ≤ succ n := le_intro add_one theorem le_imp_le_succ {n m : ℕ} (H : n ≤ m) : n ≤ succ m := le_trans H self_le_succ theorem le_imp_succ_le_or_eq {n m : ℕ} (H : n ≤ m) : succ n ≤ m ∨ n = m := obtain (k : ℕ) (Hk : n + k = m), from (le_elim H), discriminate (assume H3 : k = 0, have Heq : n = m, from calc n = n + 0 : add_zero_right⁻¹ ... = n + k : {H3⁻¹} ... = m : Hk, or.inr Heq) (take l : nat, assume H3 : k = succ l, have Hlt : succ n ≤ m, from (le_intro (calc succ n + l = n + succ l : add_move_succ ... = n + k : {H3⁻¹} ... = m : Hk)), or.inl Hlt) theorem le_ne_imp_succ_le {n m : ℕ} (H1 : n ≤ m) (H2 : n ≠ m) : succ n ≤ m := or.resolve_left (le_imp_succ_le_or_eq H1) H2 theorem le_succ_imp_le_or_eq {n m : ℕ} (H : n ≤ succ m) : n ≤ m ∨ n = succ m := or.imp_or_left (le_imp_succ_le_or_eq H) (take H2 : succ n ≤ succ m, show n ≤ m, from succ_le_cancel H2) theorem succ_le_imp_le_and_ne {n m : ℕ} (H : succ n ≤ m) : n ≤ m ∧ n ≠ m := obtain (k : ℕ) (H2 : succ n + k = m), from (le_elim H), and.intro (have H3 : n + succ k = m, from calc n + succ k = succ n + k : add_move_succ⁻¹ ... = m : H2, show n ≤ m, from le_intro H3) (assume H3 : n = m, have H4 : succ n ≤ n, from H3⁻¹ ▸ H, have H5 : succ n = n, from le_antisym H4 self_le_succ, show false, from absurd H5 succ_ne_self) theorem le_pred_self {n : ℕ} : pred n ≤ n := case n (pred_zero⁻¹ ▸ le_refl) (take k : ℕ, pred_succ⁻¹ ▸ self_le_succ) theorem pred_le {n m : ℕ} (H : n ≤ m) : pred n ≤ pred m := discriminate (take Hn : n = 0, have H2 : pred n = 0, from calc pred n = pred 0 : {Hn} ... = 0 : pred_zero, H2⁻¹ ▸ zero_le) (take k : ℕ, assume Hn : n = succ k, obtain (l : ℕ) (Hl : n + l = m), from le_elim H, have H2 : pred n + l = pred m, from calc pred n + l = pred (succ k) + l : {Hn} ... = k + l : {pred_succ} ... = pred (succ (k + l)) : pred_succ⁻¹ ... = pred (succ k + l) : {add_succ_left⁻¹} ... = pred (n + l) : {Hn⁻¹} ... = pred m : {Hl}, le_intro H2) theorem pred_le_imp_le_or_eq {n m : ℕ} (H : pred n ≤ m) : n ≤ m ∨ n = succ m := discriminate (take Hn : n = 0, or.inl (Hn⁻¹ ▸ zero_le)) (take k : ℕ, assume Hn : n = succ k, have H2 : pred n = k, from calc pred n = pred (succ k) : {Hn} ... = k : pred_succ, have H3 : k ≤ m, from H2 ▸ H, have H4 : succ k ≤ m ∨ k = m, from le_imp_succ_le_or_eq H3, show n ≤ m ∨ n = succ m, from or.imp_or H4 (take H5 : succ k ≤ m, show n ≤ m, from Hn⁻¹ ▸ H5) (take H5 : k = m, show n = succ m, from H5 ▸ Hn)) -- ### interaction with multiplication theorem mul_le_left {n m : ℕ} (H : n ≤ m) (k : ℕ) : k * n ≤ k * m := obtain (l : ℕ) (Hl : n + l = m), from (le_elim H), have H2 : k * n + k * l = k * m, from calc k * n + k * l = k * (n + l) : by simp ... = k * m : {Hl}, le_intro H2 theorem mul_le_right {n m : ℕ} (H : n ≤ m) (k : ℕ) : n * k ≤ m * k := mul_comm ▸ mul_comm ▸ (mul_le_left H k) theorem mul_le {n m k l : ℕ} (H1 : n ≤ k) (H2 : m ≤ l) : n * m ≤ k * l := le_trans (mul_le_right H1 m) (mul_le_left H2 k) -- mul_le_[left|right]_inv below theorem le_decidable [instance] (n m : ℕ) : decidable (n ≤ m) := have general : ∀n, decidable (n ≤ m), from rec_on m (take n, rec_on n (decidable.inl le_refl) (take m iH, decidable.inr not_succ_zero_le)) (take (m' : ℕ) (iH1 : ∀n, decidable (n ≤ m')) (n : ℕ), rec_on n (decidable.inl zero_le) (take (n' : ℕ) (iH2 : decidable (n' ≤ succ m')), decidable.by_cases (assume Hp : n' ≤ m', decidable.inl (succ_le Hp)) (assume Hn : ¬ n' ≤ m', have H : ¬ succ n' ≤ succ m', from assume Hle : succ n' ≤ succ m', absurd (succ_le_cancel Hle) Hn, decidable.inr H))), general n -- Less than, Greater than, Greater than or equal -- ---------------------------------------------- -- ge and gt will be transparent, so we don't need to reprove theorems for le and lt for them definition lt (n m : ℕ) := succ n ≤ m infix `<` := lt definition ge (n m : ℕ) := m ≤ n infix `>=` := ge infix `≥` := ge definition gt (n m : ℕ) := m < n infix `>` := gt theorem lt_def (n m : ℕ) : (n < m) = (succ n ≤ m) := rfl -- add_rewrite gt_def ge_def --it might be possible to remove this in Lean 0.2 theorem lt_intro {n m k : ℕ} (H : succ n + k = m) : n < m := le_intro H theorem lt_elim {n m : ℕ} (H : n < m) : ∃ k, succ n + k = m := le_elim H theorem lt_add_succ (n m : ℕ) : n < n + succ m := lt_intro add_move_succ -- ### basic facts theorem lt_imp_ne {n m : ℕ} (H : n < m) : n ≠ m := and.elim_right (succ_le_imp_le_and_ne H) theorem lt_irrefl {n : ℕ} : ¬ n < n := not_intro (assume H : n < n, absurd rfl (lt_imp_ne H)) theorem succ_pos {n : ℕ} : 0 < succ n := succ_le zero_le theorem not_lt_zero {n : ℕ} : ¬ n < 0 := not_succ_zero_le theorem lt_imp_eq_succ {n m : ℕ} (H : n < m) : exists k, m = succ k := discriminate (take (Hm : m = 0), absurd (Hm ▸ H) not_lt_zero) (take (l : ℕ) (Hm : m = succ l), exists_intro l Hm) -- ### interaction with le theorem lt_imp_le_succ {n m : ℕ} (H : n < m) : succ n ≤ m := H theorem le_succ_imp_lt {n m : ℕ} (H : succ n ≤ m) : n < m := H theorem self_lt_succ {n : ℕ} : n < succ n := le_refl theorem lt_imp_le {n m : ℕ} (H : n < m) : n ≤ m := and.elim_left (succ_le_imp_le_and_ne H) theorem le_imp_lt_or_eq {n m : ℕ} (H : n ≤ m) : n < m ∨ n = m := le_imp_succ_le_or_eq H theorem le_ne_imp_lt {n m : ℕ} (H1 : n ≤ m) (H2 : n ≠ m) : n < m := le_ne_imp_succ_le H1 H2 theorem le_imp_lt_succ {n m : ℕ} (H : n ≤ m) : n < succ m := succ_le H theorem lt_succ_imp_le {n m : ℕ} (H : n < succ m) : n ≤ m := succ_le_cancel H -- ### transitivity, antisymmmetry theorem lt_le_trans {n m k : ℕ} (H1 : n < m) (H2 : m ≤ k) : n < k := le_trans H1 H2 theorem le_lt_trans {n m k : ℕ} (H1 : n ≤ m) (H2 : m < k) : n < k := le_trans (succ_le H1) H2 theorem lt_trans {n m k : ℕ} (H1 : n < m) (H2 : m < k) : n < k := lt_le_trans H1 (lt_imp_le H2) theorem le_imp_not_gt {n m : ℕ} (H : n ≤ m) : ¬ n > m := not_intro (assume H2 : m < n, absurd (le_lt_trans H H2) lt_irrefl) theorem lt_imp_not_ge {n m : ℕ} (H : n < m) : ¬ n ≥ m := not_intro (assume H2 : m ≤ n, absurd (lt_le_trans H H2) lt_irrefl) theorem lt_antisym {n m : ℕ} (H : n < m) : ¬ m < n := le_imp_not_gt (lt_imp_le H) -- ### interaction with addition theorem add_lt_left {n m : ℕ} (H : n < m) (k : ℕ) : k + n < k + m := add_succ_right ▸ add_le_left H k theorem add_lt_right {n m : ℕ} (H : n < m) (k : ℕ) : n + k < m + k := add_comm ▸ add_comm ▸ add_lt_left H k theorem add_le_lt {n m k l : ℕ} (H1 : n ≤ k) (H2 : m < l) : n + m < k + l := le_lt_trans (add_le_right H1 m) (add_lt_left H2 k) theorem add_lt_le {n m k l : ℕ} (H1 : n < k) (H2 : m ≤ l) : n + m < k + l := lt_le_trans (add_lt_right H1 m) (add_le_left H2 k) theorem add_lt {n m k l : ℕ} (H1 : n < k) (H2 : m < l) : n + m < k + l := add_lt_le H1 (lt_imp_le H2) theorem add_lt_cancel_left {n m k : ℕ} (H : k + n < k + m) : n < m := add_le_cancel_left (add_succ_right⁻¹ ▸ H) theorem add_lt_cancel_right {n m k : ℕ} (H : n + k < m + k) : n < m := add_lt_cancel_left (add_comm ▸ add_comm ▸ H) -- ### interaction with successor (see also the interaction with le) theorem succ_lt {n m : ℕ} (H : n < m) : succ n < succ m := add_one ▸ add_one ▸ add_lt_right H 1 theorem succ_lt_cancel {n m : ℕ} (H : succ n < succ m) : n < m := add_lt_cancel_right (add_one⁻¹ ▸ add_one⁻¹ ▸ H) theorem lt_imp_lt_succ {n m : ℕ} (H : n < m) : n < succ m := lt_trans H self_lt_succ -- ### totality of lt and le theorem le_or_gt {n m : ℕ} : n ≤ m ∨ n > m := induction_on n (or.inl zero_le) (take (k : ℕ), assume IH : k ≤ m ∨ m < k, or.elim IH (assume H : k ≤ m, obtain (l : ℕ) (Hl : k + l = m), from le_elim H, discriminate (assume H2 : l = 0, have H3 : m = k, from calc m = k + l : Hl⁻¹ ... = k + 0 : {H2} ... = k : add_zero_right, have H4 : m < succ k, from H3 ▸ self_lt_succ, or.inr H4) (take l2 : ℕ, assume H2 : l = succ l2, have H3 : succ k + l2 = m, from calc succ k + l2 = k + succ l2 : add_move_succ ... = k + l : {H2⁻¹} ... = m : Hl, or.inl (le_intro H3))) (assume H : m < k, or.inr (lt_imp_lt_succ H))) theorem trichotomy_alt {n m : ℕ} : (n < m ∨ n = m) ∨ n > m := or.imp_or_left le_or_gt (assume H : n ≤ m, le_imp_lt_or_eq H) theorem trichotomy {n m : ℕ} : n < m ∨ n = m ∨ n > m := iff.elim_left or.assoc trichotomy_alt theorem le_total {n m : ℕ} : n ≤ m ∨ m ≤ n := or.imp_or_right le_or_gt (assume H : m < n, lt_imp_le H) theorem not_lt_imp_ge {n m : ℕ} (H : ¬ n < m) : n ≥ m := or.resolve_left le_or_gt H theorem not_le_imp_gt {n m : ℕ} (H : ¬ n ≤ m) : n > m := or.resolve_right le_or_gt H -- The following three theorems are automatically proved using the instance le_decidable theorem lt_decidable [instance] (n m : ℕ) : decidable (n < m) theorem gt_decidable [instance] (n m : ℕ) : decidable (n > m) theorem ge_decidable [instance] (n m : ℕ) : decidable (n ≥ m) -- Note: interaction with multiplication under "positivity" -- ### misc protected theorem strong_induction_on {P : nat → Prop} (n : ℕ) (H : ∀n, (∀m, m < n → P m) → P n) : P n := have H1 : ∀ {n m : nat}, m < n → P m, from take n, induction_on n (show ∀m, m < 0 → P m, from take m H, absurd H not_lt_zero) (take n', assume IH : ∀ {m : nat}, m < n' → P m, have H2: P n', from H n' @IH, show ∀m, m < succ n' → P m, from take m, assume H3 : m < succ n', or.elim (le_imp_lt_or_eq (lt_succ_imp_le H3)) (assume H4: m < n', IH H4) (assume H4: m = n', H4⁻¹ ▸ H2)), H1 self_lt_succ protected theorem case_strong_induction_on {P : nat → Prop} (a : nat) (H0 : P 0) (Hind : ∀(n : nat), (∀m, m ≤ n → P m) → P (succ n)) : P a := strong_induction_on a ( take n, show (∀m, m < n → P m) → P n, from case n (assume H : (∀m, m < 0 → P m), show P 0, from H0) (take n, assume H : (∀m, m < succ n → P m), show P (succ n), from Hind n (take m, assume H1 : m ≤ n, H _ (le_imp_lt_succ H1)))) -- Positivity -- --------- -- -- Writing "t > 0" is the preferred way to assert that a natural number is positive. -- ### basic theorem case_zero_pos {P : ℕ → Prop} (y : ℕ) (H0 : P 0) (H1 : ∀ {y : nat}, y > 0 → P y) : P y := case y H0 (take y, H1 succ_pos) theorem zero_or_pos {n : ℕ} : n = 0 ∨ n > 0 := or.imp_or_left (or.swap (le_imp_lt_or_eq zero_le)) (take H : 0 = n, H⁻¹) theorem succ_imp_pos {n m : ℕ} (H : n = succ m) : n > 0 := H⁻¹ ▸ succ_pos theorem ne_zero_imp_pos {n : ℕ} (H : n ≠ 0) : n > 0 := or.elim zero_or_pos (take H2 : n = 0, absurd H2 H) (take H2 : n > 0, H2) theorem pos_imp_ne_zero {n : ℕ} (H : n > 0) : n ≠ 0 := ne.symm (lt_imp_ne H) theorem pos_imp_eq_succ {n : ℕ} (H : n > 0) : exists l, n = succ l := lt_imp_eq_succ H theorem add_pos_right {n k : ℕ} (H : k > 0) : n + k > n := add_zero_right ▸ add_lt_left H n theorem add_pos_left {n : ℕ} {k : ℕ} (H : k > 0) : k + n > n := add_comm ▸ add_pos_right H -- ### multiplication theorem mul_pos {n m : ℕ} (Hn : n > 0) (Hm : m > 0) : n * m > 0 := obtain (k : ℕ) (Hk : n = succ k), from pos_imp_eq_succ Hn, obtain (l : ℕ) (Hl : m = succ l), from pos_imp_eq_succ Hm, succ_imp_pos (calc n * m = succ k * m : {Hk} ... = succ k * succ l : {Hl} ... = succ k * l + succ k : mul_succ_right ... = succ (succ k * l + k) : add_succ_right) theorem mul_pos_imp_pos_left {n m : ℕ} (H : n * m > 0) : n > 0 := discriminate (assume H2 : n = 0, have H3 : n * m = 0, from calc n * m = 0 * m : {H2} ... = 0 : mul_zero_left, have H4 : 0 > 0, from H3 ▸ H, absurd H4 lt_irrefl) (take l : nat, assume Hl : n = succ l, Hl⁻¹ ▸ succ_pos) theorem mul_pos_imp_pos_right {m n : ℕ} (H : n * m > 0) : m > 0 := mul_pos_imp_pos_left (mul_comm ▸ H) -- ### interaction of mul with le and lt theorem mul_lt_left {n m k : ℕ} (Hk : k > 0) (H : n < m) : k * n < k * m := have H2 : k * n < k * n + k, from add_pos_right Hk, have H3 : k * n + k ≤ k * m, from mul_succ_right ▸ mul_le_left H k, lt_le_trans H2 H3 theorem mul_lt_right {n m k : ℕ} (Hk : k > 0) (H : n < m) : n * k < m * k := mul_comm ▸ mul_comm ▸ mul_lt_left Hk H theorem mul_le_lt {n m k l : ℕ} (Hk : k > 0) (H1 : n ≤ k) (H2 : m < l) : n * m < k * l := le_lt_trans (mul_le_right H1 m) (mul_lt_left Hk H2) theorem mul_lt_le {n m k l : ℕ} (Hl : l > 0) (H1 : n < k) (H2 : m ≤ l) : n * m < k * l := le_lt_trans (mul_le_left H2 n) (mul_lt_right Hl H1) theorem mul_lt {n m k l : ℕ} (H1 : n < k) (H2 : m < l) : n * m < k * l := have H3 : n * m ≤ k * m, from mul_le_right (lt_imp_le H1) m, have H4 : k * m < k * l, from mul_lt_left (le_lt_trans zero_le H1) H2, le_lt_trans H3 H4 theorem mul_lt_cancel_left {n m k : ℕ} (H : k * n < k * m) : n < m := or.elim le_or_gt (assume H2 : m ≤ n, have H3 : k * m ≤ k * n, from mul_le_left H2 k, absurd H3 (lt_imp_not_ge H)) (assume H2 : n < m, H2) theorem mul_lt_cancel_right {n m k : ℕ} (H : n * k < m * k) : n < m := mul_lt_cancel_left (mul_comm ▸ mul_comm ▸ H) theorem mul_le_cancel_left {n m k : ℕ} (Hk : k > 0) (H : k * n ≤ k * m) : n ≤ m := have H2 : k * n < k * m + k, from le_lt_trans H (add_pos_right Hk), have H3 : k * n < k * succ m, from mul_succ_right⁻¹ ▸ H2, have H4 : n < succ m, from mul_lt_cancel_left H3, show n ≤ m, from lt_succ_imp_le H4 theorem mul_le_cancel_right {n k m : ℕ} (Hm : m > 0) (H : n * m ≤ k * m) : n ≤ k := mul_le_cancel_left Hm (mul_comm ▸ mul_comm ▸ H) theorem mul_cancel_left {m k n : ℕ} (Hn : n > 0) (H : n * m = n * k) : m = k := have H2 : n * m ≤ n * k, from H ▸ le_refl, have H3 : n * k ≤ n * m, from H ▸ le_refl, have H4 : m ≤ k, from mul_le_cancel_left Hn H2, have H5 : k ≤ m, from mul_le_cancel_left Hn H3, le_antisym H4 H5 theorem mul_cancel_left_or {n m k : ℕ} (H : n * m = n * k) : n = 0 ∨ m = k := or.imp_or_right zero_or_pos (assume Hn : n > 0, mul_cancel_left Hn H) theorem mul_cancel_right {n m k : ℕ} (Hm : m > 0) (H : n * m = k * m) : n = k := mul_cancel_left Hm (mul_comm ▸ mul_comm ▸ H) theorem mul_cancel_right_or {n m k : ℕ} (H : n * m = k * m) : m = 0 ∨ n = k := mul_cancel_left_or (mul_comm ▸ mul_comm ▸ H) theorem mul_eq_one_left {n m : ℕ} (H : n * m = 1) : n = 1 := have H2 : n * m > 0, from H⁻¹ ▸ succ_pos, have H3 : n > 0, from mul_pos_imp_pos_left H2, have H4 : m > 0, from mul_pos_imp_pos_right H2, or.elim le_or_gt (assume H5 : n ≤ 1, show n = 1, from le_antisym H5 H3) (assume H5 : n > 1, have H6 : n * m ≥ 2 * 1, from mul_le H5 H4, have H7 : 1 ≥ 2, from mul_one_right ▸ H ▸ H6, absurd self_lt_succ (le_imp_not_gt H7)) theorem mul_eq_one_right {n m : ℕ} (H : n * m = 1) : m = 1 := mul_eq_one_left (mul_comm ▸ H) end nat