/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Declaration of set-quotients, i.e. quotient of a mere relation which is then set-truncated. -/ import function algebra.relation types.trunc types.eq hit.quotient open eq is_trunc trunc quotient equiv namespace set_quotient section parameters {A : Type} (R : A → A → hprop) -- set-quotients are just set-truncations of (type) quotients definition set_quotient : Type := trunc 0 (quotient R) parameter {R} definition class_of (a : A) : set_quotient := tr (class_of _ a) definition eq_of_rel {a a' : A} (H : R a a') : class_of a = class_of a' := ap tr (eq_of_rel _ H) theorem is_set_set_quotient [instance] : is_set set_quotient := begin unfold set_quotient, exact _ end protected definition rec {P : set_quotient → Type} [Pt : Πaa, is_set (P aa)] (Pc : Π(a : A), P (class_of a)) (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a =[eq_of_rel H] Pc a') (x : set_quotient) : P x := begin apply (@trunc.rec_on _ _ P x), { intro x', apply Pt}, { intro y, induction y, { apply Pc}, { exact pathover_of_pathover_ap P tr (Pp H)}} end protected definition rec_on [reducible] {P : set_quotient → Type} (x : set_quotient) [Pt : Πaa, is_set (P aa)] (Pc : Π(a : A), P (class_of a)) (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a =[eq_of_rel H] Pc a') : P x := rec Pc Pp x theorem rec_eq_of_rel {P : set_quotient → Type} [Pt : Πaa, is_set (P aa)] (Pc : Π(a : A), P (class_of a)) (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a =[eq_of_rel H] Pc a') {a a' : A} (H : R a a') : apdo (rec Pc Pp) (eq_of_rel H) = Pp H := !is_set.elimo protected definition elim {P : Type} [Pt : is_set P] (Pc : A → P) (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a = Pc a') (x : set_quotient) : P := rec Pc (λa a' H, pathover_of_eq (Pp H)) x protected definition elim_on [reducible] {P : Type} (x : set_quotient) [Pt : is_set P] (Pc : A → P) (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a = Pc a') : P := elim Pc Pp x theorem elim_eq_of_rel {P : Type} [Pt : is_set P] (Pc : A → P) (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a = Pc a') {a a' : A} (H : R a a') : ap (elim Pc Pp) (eq_of_rel H) = Pp H := begin apply eq_of_fn_eq_fn_inv !(pathover_constant (eq_of_rel H)), rewrite [▸*,-apdo_eq_pathover_of_eq_ap,↑elim,rec_eq_of_rel], end protected definition rec_hprop {P : set_quotient → Type} [Pt : Πaa, is_prop (P aa)] (Pc : Π(a : A), P (class_of a)) (x : set_quotient) : P x := rec Pc (λa a' H, !is_prop.elimo) x protected definition elim_hprop {P : Type} [Pt : is_prop P] (Pc : A → P) (x : set_quotient) : P := elim Pc (λa a' H, !is_prop.elim) x end end set_quotient attribute set_quotient.class_of [constructor] attribute set_quotient.rec set_quotient.elim [unfold 7] [recursor 7] attribute set_quotient.rec_on set_quotient.elim_on [unfold 4] open sigma relation function namespace set_quotient variables {A B C : Type} (R : A → A → hprop) (S : B → B → hprop) (T : C → C → hprop) definition is_surjective_class_of : is_surjective (class_of : A → set_quotient R) := λx, set_quotient.rec_on x (λa, tr (fiber.mk a idp)) (λa a' r, !is_prop.elimo) /- non-dependent universal property -/ definition set_quotient_arrow_equiv (B : Type) [H : is_set B] : (set_quotient R → B) ≃ (Σ(f : A → B), Π(a a' : A), R a a' → f a = f a') := begin fapply equiv.MK, { intro f, exact ⟨λa, f (class_of a), λa a' r, ap f (eq_of_rel r)⟩}, { intro v x, induction v with f p, exact set_quotient.elim_on x f p}, { intro v, induction v with f p, esimp, apply ap (sigma.mk f), apply eq_of_homotopy3, intro a a' r, apply elim_eq_of_rel}, { intro f, apply eq_of_homotopy, intro x, refine set_quotient.rec_on x _ _: esimp, intro a, reflexivity, intro a a' r, apply eq_pathover, apply hdeg_square, apply elim_eq_of_rel} end protected definition code [unfold 4] (a : A) (x : set_quotient R) [H : is_equivalence R] : hprop := set_quotient.elim_on x (R a) begin intros a' a'' H1, refine to_inv !trunctype_eq_equiv _, esimp, apply ua, apply equiv_of_is_prop, { intro H2, exact is_transitive.trans R H2 H1}, { intro H2, apply is_transitive.trans R H2, exact is_symmetric.symm R H1} end protected definition encode {a : A} {x : set_quotient R} (p : class_of a = x) [H : is_equivalence R] : set_quotient.code R a x := begin induction p, esimp, apply is_reflexive.refl R end definition rel_of_eq {a a' : A} (p : class_of a = class_of a' :> set_quotient R) [H : is_equivalence R] : R a a' := set_quotient.encode R p variables {R S T} definition quotient_unary_map [unfold 7] (f : A → B) (H : Π{a a'} (r : R a a'), S (f a) (f a')) : set_quotient R → set_quotient S := set_quotient.elim (class_of ∘ f) (λa a' r, eq_of_rel (H r)) definition quotient_binary_map [unfold 10 11] (f : A → B → C) (H : Π{a a'} (r : R a a') {b b'} (s : S b b'), T (f a b) (f a' b')) [HR : is_reflexive R] [HS : is_reflexive S] : set_quotient R → set_quotient S → set_quotient T := begin refine set_quotient.elim _ _, { intro a, refine set_quotient.elim _ _, { intro b, exact class_of (f a b)}, { intro b b' s, apply eq_of_rel, apply H, apply is_reflexive.refl R, exact s}}, { intro a a' r, apply eq_of_homotopy, refine set_quotient.rec _ _, { intro b, esimp, apply eq_of_rel, apply H, exact r, apply is_reflexive.refl S}, { intro b b' s, apply eq_pathover, esimp, apply is_set.elims}} end end set_quotient