/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura, Floris van Doorn -/ prelude import init.reserved_notation open unit definition id [reducible] [unfold_full] {A : Type} (a : A) : A := a /- not -/ definition not [reducible] (a : Type) := a → empty prefix ¬ := not definition absurd {a b : Type} (H₁ : a) (H₂ : ¬a) : b := empty.rec (λ e, b) (H₂ H₁) definition mt {a b : Type} (H₁ : a → b) (H₂ : ¬b) : ¬a := assume Ha : a, absurd (H₁ Ha) H₂ definition not_empty : ¬empty := assume H : empty, H definition non_contradictory (a : Type) : Type := ¬¬a definition non_contradictory_intro {a : Type} (Ha : a) : ¬¬a := assume Hna : ¬a, absurd Ha Hna definition not.intro {a : Type} (H : a → empty) : ¬a := H /- empty -/ definition empty.elim {c : Type} (H : empty) : c := empty.rec _ H /- eq -/ infix = := eq definition rfl [constructor] {A : Type} {a : A} := eq.refl a /- These notions are here only to make porting from the standard library easier. They are defined again in init/path.hlean, and those definitions will be used throughout the HoTT-library. That's why the notation for eq below is only local. -/ namespace eq variables {A : Type} {a b c : A} definition subst [unfold 5] {P : A → Type} (H₁ : a = b) (H₂ : P a) : P b := eq.rec H₂ H₁ definition trans [unfold 5] (H₁ : a = b) (H₂ : b = c) : a = c := subst H₂ H₁ definition symm [unfold 4] (H : a = b) : b = a := subst H (refl a) definition mp {a b : Type} : (a = b) → a → b := eq.rec_on definition mpr {a b : Type} : (a = b) → b → a := assume H₁ H₂, eq.rec_on (eq.symm H₁) H₂ namespace ops end ops -- this is just to ensure that this namespace exists. There is nothing in it end eq local postfix ⁻¹ := eq.symm --input with \sy or \-1 or \inv local infixl ⬝ := eq.trans local infixr ▸ := eq.subst -- Auxiliary definition used by automation. It has the same type of eq.rec in the standard library definition eq.nrec.{l₁ l₂} {A : Type.{l₂}} {a : A} {C : A → Type.{l₁}} (H₁ : C a) (b : A) (H₂ : a = b) : C b := eq.rec H₁ H₂ definition congr {A B : Type} {f₁ f₂ : A → B} {a₁ a₂ : A} (H₁ : f₁ = f₂) (H₂ : a₁ = a₂) : f₁ a₁ = f₂ a₂ := eq.subst H₁ (eq.subst H₂ rfl) definition congr_fun {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) (a : A) : f a = g a := eq.subst H (eq.refl (f a)) definition congr_arg {A B : Type} (a a' : A) (f : A → B) (Ha : a = a') : f a = f a' := eq.subst Ha rfl definition congr_arg2 {A B C : Type} (a a' : A) (b b' : B) (f : A → B → C) (Ha : a = a') (Hb : b = b') : f a b = f a' b' := eq.subst Ha (eq.subst Hb rfl) section variables {A : Type} {a b c: A} open eq.ops definition trans_rel_left (R : A → A → Type) (H₁ : R a b) (H₂ : b = c) : R a c := H₂ ▸ H₁ definition trans_rel_right (R : A → A → Type) (H₁ : a = b) (H₂ : R b c) : R a c := H₁⁻¹ ▸ H₂ end attribute eq.subst [subst] attribute eq.refl [refl] attribute eq.trans [trans] attribute eq.symm [symm] namespace lift definition down_up.{l₁ l₂} {A : Type.{l₁}} (a : A) : down (up.{l₁ l₂} a) = a := rfl definition up_down.{l₁ l₂} {A : Type.{l₁}} (a : lift.{l₁ l₂} A) : up (down a) = a := lift.rec_on a (λ d, rfl) end lift /- ne -/ definition ne [reducible] {A : Type} (a b : A) := ¬(a = b) notation a ≠ b := ne a b namespace ne open eq.ops variable {A : Type} variables {a b : A} definition intro (H : a = b → empty) : a ≠ b := H definition elim (H : a ≠ b) : a = b → empty := H definition irrefl (H : a ≠ a) : empty := H rfl definition symm (H : a ≠ b) : b ≠ a := assume (H₁ : b = a), H (H₁⁻¹) end ne definition empty_of_ne {A : Type} {a : A} : a ≠ a → empty := ne.irrefl section open eq.ops variables {p : Type₀} definition ne_empty_of_self : p → p ≠ empty := assume (Hp : p) (Heq : p = empty), Heq ▸ Hp definition ne_unit_of_not : ¬p → p ≠ unit := assume (Hnp : ¬p) (Heq : p = unit), (Heq ▸ Hnp) star definition unit_ne_empty : ¬unit = empty := ne_empty_of_self star end /- prod -/ abbreviation pair [constructor] := @prod.mk infixr × := prod variables {a b c d : Type} attribute prod.rec [elim] attribute prod.mk [intro!] protected definition prod.elim [unfold 4] (H₁ : a × b) (H₂ : a → b → c) : c := prod.rec H₂ H₁ definition prod.swap [unfold 3] : a × b → b × a := prod.rec (λHa Hb, prod.mk Hb Ha) /- sum -/ infixr ⊎ := sum infixr + := sum attribute sum.rec [elim] protected definition sum.elim [unfold 4] (H₁ : a ⊎ b) (H₂ : a → c) (H₃ : b → c) : c := sum.rec H₂ H₃ H₁ definition non_contradictory_em (a : Type) : ¬¬(a ⊎ ¬a) := assume not_em : ¬(a ⊎ ¬a), have neg_a : ¬a, from assume pos_a : a, absurd (sum.inl pos_a) not_em, absurd (sum.inr neg_a) not_em definition sum.swap : a ⊎ b → b ⊎ a := sum.rec sum.inr sum.inl /- iff -/ definition iff (a b : Type) := (a → b) × (b → a) notation a <-> b := iff a b notation a ↔ b := iff a b definition iff.intro : (a → b) → (b → a) → (a ↔ b) := prod.mk attribute iff.intro [intro!] definition iff.elim : ((a → b) → (b → a) → c) → (a ↔ b) → c := prod.rec attribute iff.elim [recursor 5] [elim] definition iff.elim_left : (a ↔ b) → a → b := prod.pr1 definition iff.mp := @iff.elim_left definition iff.elim_right : (a ↔ b) → b → a := prod.pr2 definition iff.mpr := @iff.elim_right definition iff.refl [refl] (a : Type) : a ↔ a := iff.intro (assume H, H) (assume H, H) definition iff.rfl {a : Type} : a ↔ a := iff.refl a definition iff.trans [trans] (H₁ : a ↔ b) (H₂ : b ↔ c) : a ↔ c := iff.intro (assume Ha, iff.mp H₂ (iff.mp H₁ Ha)) (assume Hc, iff.mpr H₁ (iff.mpr H₂ Hc)) definition iff.symm [symm] (H : a ↔ b) : b ↔ a := iff.intro (iff.elim_right H) (iff.elim_left H) definition iff.comm : (a ↔ b) ↔ (b ↔ a) := iff.intro iff.symm iff.symm definition iff.of_eq {a b : Type} (H : a = b) : a ↔ b := eq.rec_on H iff.rfl definition not_iff_not_of_iff (H₁ : a ↔ b) : ¬a ↔ ¬b := iff.intro (assume (Hna : ¬ a) (Hb : b), Hna (iff.elim_right H₁ Hb)) (assume (Hnb : ¬ b) (Ha : a), Hnb (iff.elim_left H₁ Ha)) definition of_iff_unit (H : a ↔ unit) : a := iff.mp (iff.symm H) star definition not_of_iff_empty : (a ↔ empty) → ¬a := iff.mp definition iff_unit_intro (H : a) : a ↔ unit := iff.intro (λ Hl, star) (λ Hr, H) definition iff_empty_intro (H : ¬a) : a ↔ empty := iff.intro H (empty.rec _) definition not_non_contradictory_iff_absurd (a : Type) : ¬¬¬a ↔ ¬a := iff.intro (λ (Hl : ¬¬¬a) (Ha : a), Hl (non_contradictory_intro Ha)) absurd definition imp_congr [congr] (H1 : a ↔ c) (H2 : b ↔ d) : (a → b) ↔ (c → d) := iff.intro (λHab Hc, iff.mp H2 (Hab (iff.mpr H1 Hc))) (λHcd Ha, iff.mpr H2 (Hcd (iff.mp H1 Ha))) definition not_not_intro (Ha : a) : ¬¬a := assume Hna : ¬a, Hna Ha definition not_of_not_not_not (H : ¬¬¬a) : ¬a := λ Ha, absurd (not_not_intro Ha) H definition not_unit [simp] : (¬ unit) ↔ empty := iff_empty_intro (not_not_intro star) definition not_empty_iff [simp] : (¬ empty) ↔ unit := iff_unit_intro not_empty definition not_congr (H : a ↔ b) : ¬a ↔ ¬b := iff.intro (λ H₁ H₂, H₁ (iff.mpr H H₂)) (λ H₁ H₂, H₁ (iff.mp H H₂)) definition ne_self_iff_empty [simp] {A : Type} (a : A) : (not (a = a)) ↔ empty := iff.intro empty_of_ne empty.elim definition eq_self_iff_unit [simp] {A : Type} (a : A) : (a = a) ↔ unit := iff_unit_intro rfl definition iff_not_self [simp] (a : Type) : (a ↔ ¬a) ↔ empty := iff_empty_intro (λ H, have H' : ¬a, from (λ Ha, (iff.mp H Ha) Ha), H' (iff.mpr H H')) definition not_iff_self [simp] (a : Type) : (¬a ↔ a) ↔ empty := iff_empty_intro (λ H, have H' : ¬a, from (λ Ha, (iff.mpr H Ha) Ha), H' (iff.mp H H')) definition unit_iff_empty [simp] : (unit ↔ empty) ↔ empty := iff_empty_intro (λ H, iff.mp H star) definition empty_iff_unit [simp] : (empty ↔ unit) ↔ empty := iff_empty_intro (λ H, iff.mpr H star) definition empty_of_unit_iff_empty : (unit ↔ empty) → empty := assume H, iff.mp H star /- prod simp rules -/ definition prod.imp (H₂ : a → c) (H₃ : b → d) : a × b → c × d := prod.rec (λHa Hb, prod.mk (H₂ Ha) (H₃ Hb)) definition prod_congr [congr] (H1 : a ↔ c) (H2 : b ↔ d) : (a × b) ↔ (c × d) := iff.intro (prod.imp (iff.mp H1) (iff.mp H2)) (prod.imp (iff.mpr H1) (iff.mpr H2)) definition prod.comm [simp] : a × b ↔ b × a := iff.intro prod.swap prod.swap definition prod.assoc [simp] : (a × b) × c ↔ a × (b × c) := iff.intro (prod.rec (λ H' Hc, prod.rec (λ Ha Hb, prod.mk Ha (prod.mk Hb Hc)) H')) (prod.rec (λ Ha, prod.rec (λ Hb Hc, prod.mk (prod.mk Ha Hb) Hc))) definition prod.pr1_comm [simp] : a × (b × c) ↔ b × (a × c) := iff.trans (iff.symm !prod.assoc) (iff.trans (prod_congr !prod.comm !iff.refl) !prod.assoc) definition prod_iff_left {a b : Type} (Hb : b) : (a × b) ↔ a := iff.intro prod.pr1 (λHa, prod.mk Ha Hb) definition prod_iff_right {a b : Type} (Ha : a) : (a × b) ↔ b := iff.intro prod.pr2 (prod.mk Ha) definition prod_unit [simp] (a : Type) : a × unit ↔ a := prod_iff_left star definition unit_prod [simp] (a : Type) : unit × a ↔ a := prod_iff_right star definition prod_empty [simp] (a : Type) : a × empty ↔ empty := iff_empty_intro prod.pr2 definition empty_prod [simp] (a : Type) : empty × a ↔ empty := iff_empty_intro prod.pr1 definition not_prod_self [simp] (a : Type) : (¬a × a) ↔ empty := iff_empty_intro (λ H, prod.elim H (λ H₁ H₂, absurd H₂ H₁)) definition prod_not_self [simp] (a : Type) : (a × ¬a) ↔ empty := iff_empty_intro (λ H, prod.elim H (λ H₁ H₂, absurd H₁ H₂)) definition prod_self [simp] (a : Type) : a × a ↔ a := iff.intro prod.pr1 (assume H, prod.mk H H) /- sum simp rules -/ definition sum.imp (H₂ : a → c) (H₃ : b → d) : a ⊎ b → c ⊎ d := sum.rec (λ H, sum.inl (H₂ H)) (λ H, sum.inr (H₃ H)) definition sum.imp_left (H : a → b) : a ⊎ c → b ⊎ c := sum.imp H id definition sum.imp_right (H : a → b) : c ⊎ a → c ⊎ b := sum.imp id H definition sum_congr [congr] (H1 : a ↔ c) (H2 : b ↔ d) : (a ⊎ b) ↔ (c ⊎ d) := iff.intro (sum.imp (iff.mp H1) (iff.mp H2)) (sum.imp (iff.mpr H1) (iff.mpr H2)) definition sum.comm [simp] : a ⊎ b ↔ b ⊎ a := iff.intro sum.swap sum.swap definition sum.assoc [simp] : (a ⊎ b) ⊎ c ↔ a ⊎ (b ⊎ c) := iff.intro (sum.rec (sum.imp_right sum.inl) (λ H, sum.inr (sum.inr H))) (sum.rec (λ H, sum.inl (sum.inl H)) (sum.imp_left sum.inr)) definition sum.left_comm [simp] : a ⊎ (b ⊎ c) ↔ b ⊎ (a ⊎ c) := iff.trans (iff.symm !sum.assoc) (iff.trans (sum_congr !sum.comm !iff.refl) !sum.assoc) definition sum_unit [simp] (a : Type) : a ⊎ unit ↔ unit := iff_unit_intro (sum.inr star) definition unit_sum [simp] (a : Type) : unit ⊎ a ↔ unit := iff_unit_intro (sum.inl star) definition sum_empty [simp] (a : Type) : a ⊎ empty ↔ a := iff.intro (sum.rec id empty.elim) sum.inl definition empty_sum [simp] (a : Type) : empty ⊎ a ↔ a := iff.trans sum.comm !sum_empty definition sum_self [simp] (a : Type) : a ⊎ a ↔ a := iff.intro (sum.rec id id) sum.inl /- sum resolution rulse -/ definition sum.resolve_left {a b : Type} (H : a ⊎ b) (na : ¬ a) : b := sum.elim H (λ Ha, absurd Ha na) id definition sum.neg_resolve_left {a b : Type} (H : ¬ a ⊎ b) (Ha : a) : b := sum.elim H (λ na, absurd Ha na) id definition sum.resolve_right {a b : Type} (H : a ⊎ b) (nb : ¬ b) : a := sum.elim H id (λ Hb, absurd Hb nb) definition sum.neg_resolve_right {a b : Type} (H : a ⊎ ¬ b) (Hb : b) : a := sum.elim H id (λ nb, absurd Hb nb) /- iff simp rules -/ definition iff_unit [simp] (a : Type) : (a ↔ unit) ↔ a := iff.intro (assume H, iff.mpr H star) iff_unit_intro definition unit_iff [simp] (a : Type) : (unit ↔ a) ↔ a := iff.trans iff.comm !iff_unit definition iff_empty [simp] (a : Type) : (a ↔ empty) ↔ ¬ a := iff.intro prod.pr1 iff_empty_intro definition empty_iff [simp] (a : Type) : (empty ↔ a) ↔ ¬ a := iff.trans iff.comm !iff_empty definition iff_self [simp] (a : Type) : (a ↔ a) ↔ unit := iff_unit_intro iff.rfl definition iff_congr [congr] (H1 : a ↔ c) (H2 : b ↔ d) : (a ↔ b) ↔ (c ↔ d) := prod_congr (imp_congr H1 H2) (imp_congr H2 H1) /- decidable -/ inductive decidable [class] (p : Type) : Type := | inl : p → decidable p | inr : ¬p → decidable p definition decidable_unit [instance] : decidable unit := decidable.inl star definition decidable_empty [instance] : decidable empty := decidable.inr not_empty -- We use "dependent" if-then-else to be able to communicate the if-then-else condition -- to the branches definition dite (c : Type) [H : decidable c] {A : Type} : (c → A) → (¬ c → A) → A := decidable.rec_on H /- if-then-else -/ definition ite (c : Type) [H : decidable c] {A : Type} (t e : A) : A := decidable.rec_on H (λ Hc, t) (λ Hnc, e) namespace decidable variables {p q : Type} definition by_cases {q : Type} [C : decidable p] : (p → q) → (¬p → q) → q := !dite theorem em (p : Type) [H : decidable p] : p ⊎ ¬p := by_cases sum.inl sum.inr theorem by_contradiction [Hp : decidable p] (H : ¬p → empty) : p := if H1 : p then H1 else empty.rec _ (H H1) end decidable section variables {p q : Type} open decidable definition decidable_of_decidable_of_iff (Hp : decidable p) (H : p ↔ q) : decidable q := if Hp : p then inl (iff.mp H Hp) else inr (iff.mp (not_iff_not_of_iff H) Hp) definition decidable_of_decidable_of_eq {p q : Type} (Hp : decidable p) (H : p = q) : decidable q := decidable_of_decidable_of_iff Hp (iff.of_eq H) protected definition sum.by_cases [Hp : decidable p] [Hq : decidable q] {A : Type} (h : p ⊎ q) (h₁ : p → A) (h₂ : q → A) : A := if hp : p then h₁ hp else if hq : q then h₂ hq else empty.rec _ (sum.elim h hp hq) end section variables {p q : Type} open decidable (rec_on inl inr) definition decidable_prod [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p × q) := if hp : p then if hq : q then inl (prod.mk hp hq) else inr (assume H : p × q, hq (prod.pr2 H)) else inr (assume H : p × q, hp (prod.pr1 H)) definition decidable_sum [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p ⊎ q) := if hp : p then inl (sum.inl hp) else if hq : q then inl (sum.inr hq) else inr (sum.rec hp hq) definition decidable_not [instance] [Hp : decidable p] : decidable (¬p) := if hp : p then inr (absurd hp) else inl hp definition decidable_implies [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p → q) := if hp : p then if hq : q then inl (assume H, hq) else inr (assume H : p → q, absurd (H hp) hq) else inl (assume Hp, absurd Hp hp) definition decidable_iff [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p ↔ q) := decidable_prod end definition decidable_pred [reducible] {A : Type} (R : A → Type) := Π (a : A), decidable (R a) definition decidable_rel [reducible] {A : Type} (R : A → A → Type) := Π (a b : A), decidable (R a b) definition decidable_eq [reducible] (A : Type) := decidable_rel (@eq A) definition decidable_ne [instance] {A : Type} [H : decidable_eq A] (a b : A) : decidable (a ≠ b) := decidable_implies namespace bool theorem ff_ne_tt : ff = tt → empty | [none] end bool open bool definition is_dec_eq {A : Type} (p : A → A → bool) : Type := Π ⦃x y : A⦄, p x y = tt → x = y definition is_dec_refl {A : Type} (p : A → A → bool) : Type := Πx, p x x = tt open decidable protected definition bool.has_decidable_eq [instance] : Πa b : bool, decidable (a = b) | ff ff := inl rfl | ff tt := inr ff_ne_tt | tt ff := inr (ne.symm ff_ne_tt) | tt tt := inl rfl definition decidable_eq_of_bool_pred {A : Type} {p : A → A → bool} (H₁ : is_dec_eq p) (H₂ : is_dec_refl p) : decidable_eq A := take x y : A, if Hp : p x y = tt then inl (H₁ Hp) else inr (assume Hxy : x = y, (eq.subst Hxy Hp) (H₂ y)) /- inhabited -/ inductive inhabited [class] (A : Type) : Type := mk : A → inhabited A protected definition inhabited.value {A : Type} : inhabited A → A := inhabited.rec (λa, a) protected definition inhabited.destruct {A : Type} {B : Type} (H1 : inhabited A) (H2 : A → B) : B := inhabited.rec H2 H1 definition default (A : Type) [H : inhabited A] : A := inhabited.value H definition arbitrary [irreducible] (A : Type) [H : inhabited A] : A := inhabited.value H definition Type.is_inhabited [instance] : inhabited Type := inhabited.mk (lift unit) definition inhabited_fun [instance] (A : Type) {B : Type} [H : inhabited B] : inhabited (A → B) := inhabited.rec_on H (λb, inhabited.mk (λa, b)) definition inhabited_Pi [instance] (A : Type) {B : A → Type} [H : Πx, inhabited (B x)] : inhabited (Πx, B x) := inhabited.mk (λa, !default) protected definition bool.is_inhabited [instance] : inhabited bool := inhabited.mk ff protected definition pos_num.is_inhabited [instance] : inhabited pos_num := inhabited.mk pos_num.one protected definition num.is_inhabited [instance] : inhabited num := inhabited.mk num.zero inductive nonempty [class] (A : Type) : Type := intro : A → nonempty A protected definition nonempty.elim {A : Type} {B : Type} (H1 : nonempty A) (H2 : A → B) : B := nonempty.rec H2 H1 theorem nonempty_of_inhabited [instance] {A : Type} [H : inhabited A] : nonempty A := nonempty.intro !default theorem nonempty_of_exists {A : Type} {P : A → Type} : (sigma P) → nonempty A := sigma.rec (λw H, nonempty.intro w) /- subsingleton -/ inductive subsingleton [class] (A : Type) : Type := intro : (Π a b : A, a = b) → subsingleton A protected definition subsingleton.elim {A : Type} [H : subsingleton A] : Π(a b : A), a = b := subsingleton.rec (λp, p) H protected theorem rec_subsingleton {p : Type} [H : decidable p] {H1 : p → Type} {H2 : ¬p → Type} [H3 : Π(h : p), subsingleton (H1 h)] [H4 : Π(h : ¬p), subsingleton (H2 h)] : subsingleton (decidable.rec_on H H1 H2) := decidable.rec_on H (λh, H3 h) (λh, H4 h) --this can be proven using dependent version of "by_cases" theorem if_pos {c : Type} [H : decidable c] (Hc : c) {A : Type} {t e : A} : (ite c t e) = t := decidable.rec (λ Hc : c, eq.refl (@ite c (decidable.inl Hc) A t e)) (λ Hnc : ¬c, absurd Hc Hnc) H theorem if_neg {c : Type} [H : decidable c] (Hnc : ¬c) {A : Type} {t e : A} : (ite c t e) = e := decidable.rec (λ Hc : c, absurd Hc Hnc) (λ Hnc : ¬c, eq.refl (@ite c (decidable.inr Hnc) A t e)) H theorem if_t_t [simp] (c : Type) [H : decidable c] {A : Type} (t : A) : (ite c t t) = t := decidable.rec (λ Hc : c, eq.refl (@ite c (decidable.inl Hc) A t t)) (λ Hnc : ¬c, eq.refl (@ite c (decidable.inr Hnc) A t t)) H theorem implies_of_if_pos {c t e : Type} [H : decidable c] (h : ite c t e) : c → t := assume Hc, eq.rec_on (if_pos Hc) h theorem implies_of_if_neg {c t e : Type} [H : decidable c] (h : ite c t e) : ¬c → e := assume Hnc, eq.rec_on (if_neg Hnc) h theorem if_ctx_congr {A : Type} {b c : Type} [dec_b : decidable b] [dec_c : decidable c] {x y u v : A} (h_c : b ↔ c) (h_t : c → x = u) (h_e : ¬c → y = v) : ite b x y = ite c u v := decidable.rec_on dec_b (λ hp : b, calc ite b x y = x : if_pos hp ... = u : h_t (iff.mp h_c hp) ... = ite c u v : if_pos (iff.mp h_c hp)) (λ hn : ¬b, calc ite b x y = y : if_neg hn ... = v : h_e (iff.mp (not_iff_not_of_iff h_c) hn) ... = ite c u v : if_neg (iff.mp (not_iff_not_of_iff h_c) hn)) theorem if_congr [congr] {A : Type} {b c : Type} [dec_b : decidable b] [dec_c : decidable c] {x y u v : A} (h_c : b ↔ c) (h_t : x = u) (h_e : y = v) : ite b x y = ite c u v := @if_ctx_congr A b c dec_b dec_c x y u v h_c (λ h, h_t) (λ h, h_e) theorem if_ctx_simp_congr {A : Type} {b c : Type} [dec_b : decidable b] {x y u v : A} (h_c : b ↔ c) (h_t : c → x = u) (h_e : ¬c → y = v) : ite b x y = (@ite c (decidable_of_decidable_of_iff dec_b h_c) A u v) := @if_ctx_congr A b c dec_b (decidable_of_decidable_of_iff dec_b h_c) x y u v h_c h_t h_e theorem if_simp_congr [congr] {A : Type} {b c : Type} [dec_b : decidable b] {x y u v : A} (h_c : b ↔ c) (h_t : x = u) (h_e : y = v) : ite b x y = (@ite c (decidable_of_decidable_of_iff dec_b h_c) A u v) := @if_ctx_simp_congr A b c dec_b x y u v h_c (λ h, h_t) (λ h, h_e) definition if_unit [simp] {A : Type} (t e : A) : (if unit then t else e) = t := if_pos star definition if_empty [simp] {A : Type} (t e : A) : (if empty then t else e) = e := if_neg not_empty theorem if_ctx_congr_prop {b c x y u v : Type} [dec_b : decidable b] [dec_c : decidable c] (h_c : b ↔ c) (h_t : c → (x ↔ u)) (h_e : ¬c → (y ↔ v)) : ite b x y ↔ ite c u v := decidable.rec_on dec_b (λ hp : b, calc ite b x y ↔ x : iff.of_eq (if_pos hp) ... ↔ u : h_t (iff.mp h_c hp) ... ↔ ite c u v : iff.of_eq (if_pos (iff.mp h_c hp))) (λ hn : ¬b, calc ite b x y ↔ y : iff.of_eq (if_neg hn) ... ↔ v : h_e (iff.mp (not_iff_not_of_iff h_c) hn) ... ↔ ite c u v : iff.of_eq (if_neg (iff.mp (not_iff_not_of_iff h_c) hn))) theorem if_congr_prop [congr] {b c x y u v : Type} [dec_b : decidable b] [dec_c : decidable c] (h_c : b ↔ c) (h_t : x ↔ u) (h_e : y ↔ v) : ite b x y ↔ ite c u v := if_ctx_congr_prop h_c (λ h, h_t) (λ h, h_e) theorem if_ctx_simp_congr_prop {b c x y u v : Type} [dec_b : decidable b] (h_c : b ↔ c) (h_t : c → (x ↔ u)) (h_e : ¬c → (y ↔ v)) : ite b x y ↔ (@ite c (decidable_of_decidable_of_iff dec_b h_c) Type u v) := @if_ctx_congr_prop b c x y u v dec_b (decidable_of_decidable_of_iff dec_b h_c) h_c h_t h_e theorem if_simp_congr_prop [congr] {b c x y u v : Type} [dec_b : decidable b] (h_c : b ↔ c) (h_t : x ↔ u) (h_e : y ↔ v) : ite b x y ↔ (@ite c (decidable_of_decidable_of_iff dec_b h_c) Type u v) := @if_ctx_simp_congr_prop b c x y u v dec_b h_c (λ h, h_t) (λ h, h_e) -- Remark: dite and ite are "definitionally equal" when we ignore the proofs. theorem dite_ite_eq (c : Type) [H : decidable c] {A : Type} (t : A) (e : A) : dite c (λh, t) (λh, e) = ite c t e := rfl definition is_unit (c : Type) [H : decidable c] : Type₀ := if c then unit else empty definition is_empty (c : Type) [H : decidable c] : Type₀ := if c then empty else unit definition of_is_unit {c : Type} [H₁ : decidable c] (H₂ : is_unit c) : c := decidable.rec_on H₁ (λ Hc, Hc) (λ Hnc, empty.rec _ (if_neg Hnc ▸ H₂)) notation `dec_star` := of_is_unit star theorem not_of_not_is_unit {c : Type} [H₁ : decidable c] (H₂ : ¬ is_unit c) : ¬ c := if Hc : c then absurd star (if_pos Hc ▸ H₂) else Hc theorem not_of_is_empty {c : Type} [H₁ : decidable c] (H₂ : is_empty c) : ¬ c := if Hc : c then empty.rec _ (if_pos Hc ▸ H₂) else Hc theorem of_not_is_empty {c : Type} [H₁ : decidable c] (H₂ : ¬ is_empty c) : c := if Hc : c then Hc else absurd star (if_neg Hc ▸ H₂) -- The following symbols should not be considered in the pattern inference procedure used by -- heuristic instantiation. attribute prod sum not iff ite dite eq ne [no_pattern] -- namespace used to collect congruence rules for "contextual simplification" namespace contextual attribute if_ctx_simp_congr [congr] attribute if_ctx_simp_congr_prop [congr] end contextual