-- BEGINWAIT -- ENDWAIT -- BEGINFINDP STALE false|Prop false.rec|Π (C : Type), false → C false.elim|false → ?c false.of_ne|?a ≠ ?a → false false.rec_on|Π (C : Type), false → C false.cases_on|Π (C : Type), false → C false.induction_on|∀ (C : Prop), false → C true_ne_false|¬true = false nat.lt_self_iff_false|∀ (n : ℕ), n < n ↔ false not_of_is_false|is_false ?c → ¬?c not_of_iff_false|(?a ↔ false) → ¬?a is_false|Π (c : Prop) [H : decidable c], Prop classical.eq_true_or_eq_false|∀ (a : Prop), a = true ∨ a = false classical.eq_false_or_eq_true|∀ (a : Prop), a = false ∨ a = true nat.lt_zero_iff_false|∀ (a : ℕ), a < 0 ↔ false not_of_eq_false|?p = false → ¬?p nat.succ_le_self_iff_false|∀ (n : ℕ), nat.succ n ≤ n ↔ false decidable.rec_on_false|Π (H3 : ¬?p), ?H2 H3 → decidable.rec_on ?H ?H1 ?H2 not_false|¬false decidable_false|decidable false of_not_is_false|¬is_false ?c → ?c classical.cases_true_false|∀ (P : Prop → Prop), P true → P false → (∀ (a : Prop), P a) iff_false_intro|¬?a → (?a ↔ false) ne_false_of_self|?p → ?p ≠ false nat.succ_le_zero_iff_false|∀ (n : ℕ), nat.succ n ≤ 0 ↔ false tactic.exfalso|tactic -- ENDFINDP