/- Copyright (c) 2015 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad Bundled structures -/ import algebra.group homotopy.interval open algebra pointed is_trunc namespace algebra structure Semigroup := (carrier : Type) (struct : semigroup carrier) attribute Semigroup.carrier [coercion] attribute Semigroup.struct [instance] structure CommSemigroup := (carrier : Type) (struct : comm_semigroup carrier) attribute CommSemigroup.carrier [coercion] attribute CommSemigroup.struct [instance] structure Monoid := (carrier : Type) (struct : monoid carrier) attribute Monoid.carrier [coercion] attribute Monoid.struct [instance] structure CommMonoid := (carrier : Type) (struct : comm_monoid carrier) attribute CommMonoid.carrier [coercion] attribute CommMonoid.struct [instance] structure Group := (carrier : Type) (struct : group carrier) attribute Group.carrier [coercion] attribute Group.struct [instance] section local attribute Group.struct [instance] definition pSet_of_Group [constructor] [reducible] [coercion] (G : Group) : Set* := ptrunctype.mk G !semigroup.is_set_carrier 1 end attribute algebra._trans_of_pSet_of_Group [unfold 1] attribute algebra._trans_of_pSet_of_Group_1 algebra._trans_of_pSet_of_Group_2 [constructor] definition pType_of_Group [reducible] [constructor] : Group → Type* := algebra._trans_of_pSet_of_Group_1 definition Set_of_Group [reducible] [constructor] : Group → Set := algebra._trans_of_pSet_of_Group_2 definition AddGroup : Type := Group definition AddGroup.mk [constructor] [reducible] (G : Type) (H : add_group G) : AddGroup := Group.mk G H definition AddGroup.struct [reducible] (G : AddGroup) : add_group G := Group.struct G attribute AddGroup.struct Group.struct [instance] [priority 2000] structure CommGroup := (carrier : Type) (struct : comm_group carrier) attribute CommGroup.carrier [coercion] definition AddCommGroup : Type := CommGroup definition AddCommGroup.mk [constructor] [reducible] (G : Type) (H : add_comm_group G) : AddCommGroup := CommGroup.mk G H definition AddCommGroup.struct [reducible] (G : AddCommGroup) : add_comm_group G := CommGroup.struct G attribute AddCommGroup.struct CommGroup.struct [instance] [priority 2000] definition Group_of_CommGroup [coercion] [constructor] (G : CommGroup) : Group := Group.mk G _ attribute algebra._trans_of_Group_of_CommGroup_1 algebra._trans_of_Group_of_CommGroup algebra._trans_of_Group_of_CommGroup_3 [constructor] attribute algebra._trans_of_Group_of_CommGroup_2 [unfold 1] -- structure AddSemigroup := -- (carrier : Type) (struct : add_semigroup carrier) -- attribute AddSemigroup.carrier [coercion] -- attribute AddSemigroup.struct [instance] -- structure AddCommSemigroup := -- (carrier : Type) (struct : add_comm_semigroup carrier) -- attribute AddCommSemigroup.carrier [coercion] -- attribute AddCommSemigroup.struct [instance] -- structure AddMonoid := -- (carrier : Type) (struct : add_monoid carrier) -- attribute AddMonoid.carrier [coercion] -- attribute AddMonoid.struct [instance] -- structure AddCommMonoid := -- (carrier : Type) (struct : add_comm_monoid carrier) -- attribute AddCommMonoid.carrier [coercion] -- attribute AddCommMonoid.struct [instance] -- structure AddGroup := -- (carrier : Type) (struct : add_group carrier) -- attribute AddGroup.carrier [coercion] -- attribute AddGroup.struct [instance] -- structure AddCommGroup := -- (carrier : Type) (struct : add_comm_group carrier) -- attribute AddCommGroup.carrier [coercion] -- attribute AddCommGroup.struct [instance] end algebra