/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn, Jakob von Raumer Functor precategory and category -/ import .opposite ..functor.attributes open eq category is_trunc nat_trans iso is_equiv category.hom trunc namespace functor definition precategory_functor [instance] [constructor] (D C : Precategory) : precategory (functor C D) := precategory.mk (λa b, nat_trans a b) (λ a b c g f, nat_trans.compose g f) (λ a, nat_trans.id) (λ a b c d h g f, !nat_trans.assoc) (λ a b f, !nat_trans.id_left) (λ a b f, !nat_trans.id_right) definition Precategory_functor [reducible] [constructor] (D C : Precategory) : Precategory := precategory.Mk (precategory_functor D C) infixr ` ^c `:80 := Precategory_functor section /- we prove that if a natural transformation is pointwise an iso, then it is an iso -/ variables {C D : Precategory} {F G : C ⇒ D} (η : F ⟹ G) [iso : Π(a : C), is_iso (η a)] include iso definition nat_trans_inverse [constructor] : G ⟹ F := nat_trans.mk (λc, (η c)⁻¹) (λc d f, abstract begin apply comp_inverse_eq_of_eq_comp, transitivity (natural_map η d)⁻¹ ∘ to_fun_hom G f ∘ natural_map η c, {apply eq_inverse_comp_of_comp_eq, symmetry, apply naturality}, {apply assoc} end end) definition nat_trans_left_inverse : nat_trans_inverse η ∘n η = 1 := begin fapply (apdt011 nat_trans.mk), apply eq_of_homotopy, intro c, apply left_inverse, apply eq_of_homotopy3, intros, apply is_set.elim end definition nat_trans_right_inverse : η ∘n nat_trans_inverse η = 1 := begin fapply (apdt011 nat_trans.mk), apply eq_of_homotopy, intro c, apply right_inverse, apply eq_of_homotopy3, intros, apply is_set.elim end definition is_natural_iso [constructor] : is_iso η := is_iso.mk _ (nat_trans_left_inverse η) (nat_trans_right_inverse η) variable (iso) definition natural_iso.mk [constructor] : F ≅ G := iso.mk _ (is_natural_iso η) omit iso variables (F G) definition is_natural_inverse (η : Πc, F c ≅ G c) (nat : Π⦃a b : C⦄ (f : hom a b), G f ∘ to_hom (η a) = to_hom (η b) ∘ F f) {a b : C} (f : hom a b) : F f ∘ to_inv (η a) = to_inv (η b) ∘ G f := let η' : F ⟹ G := nat_trans.mk (λc, to_hom (η c)) @nat in naturality (nat_trans_inverse η') f definition is_natural_inverse' (η₁ : Πc, F c ≅ G c) (η₂ : F ⟹ G) (p : η₁ ~ η₂) {a b : C} (f : hom a b) : F f ∘ to_inv (η₁ a) = to_inv (η₁ b) ∘ G f := is_natural_inverse F G η₁ abstract λa b g, (p a)⁻¹ ▸ (p b)⁻¹ ▸ naturality η₂ g end f variables {F G} definition natural_iso.MK [constructor] (η : Πc, F c ⟶ G c) (p : Π(c c' : C) (f : c ⟶ c'), G f ∘ η c = η c' ∘ F f) (θ : Πc, G c ⟶ F c) (r : Πc, θ c ∘ η c = id) (q : Πc, η c ∘ θ c = id) : F ≅ G := iso.mk (nat_trans.mk η p) (@(is_natural_iso _) (λc, is_iso.mk (θ c) (r c) (q c))) definition natural_iso.mk' [constructor] (η : Πc, F c ≅ G c) (p : Π(c c' : C) (f : c ⟶ c'), G f ∘ to_hom (η c) = to_hom (η c') ∘ F f) : F ≅ G := natural_iso.MK (λc, to_hom (η c)) p (λc, to_inv (η c)) (λc, to_left_inverse (η c)) (λc, to_right_inverse (η c)) end section /- and conversely, if a natural transformation is an iso, it is componentwise an iso -/ variables {A B C D : Precategory} {F G : C ⇒ D} (η : hom F G) [isoη : is_iso η] (c : C) include isoη definition componentwise_is_iso [constructor] : is_iso (η c) := @is_iso.mk _ _ _ _ _ (natural_map η⁻¹ c) (ap010 natural_map ( left_inverse η) c) (ap010 natural_map (right_inverse η) c) local attribute componentwise_is_iso [instance] variable {isoη} definition natural_map_inverse : natural_map η⁻¹ c = (η c)⁻¹ := idp variable [isoη] definition naturality_iso {c c' : C} (f : c ⟶ c') : G f = η c' ∘ F f ∘ (η c)⁻¹ := calc G f = (G f ∘ η c) ∘ (η c)⁻¹ : by rewrite comp_inverse_cancel_right ... = (η c' ∘ F f) ∘ (η c)⁻¹ : by rewrite naturality ... = η c' ∘ F f ∘ (η c)⁻¹ : by rewrite assoc definition naturality_iso' {c c' : C} (f : c ⟶ c') : (η c')⁻¹ ∘ G f ∘ η c = F f := calc (η c')⁻¹ ∘ G f ∘ η c = (η c')⁻¹ ∘ η c' ∘ F f : by rewrite naturality ... = F f : by rewrite inverse_comp_cancel_left omit isoη definition componentwise_iso [constructor] (η : F ≅ G) (c : C) : F c ≅ G c := iso.mk (natural_map (to_hom η) c) (@componentwise_is_iso _ _ _ _ (to_hom η) (struct η) c) definition componentwise_iso_id (c : C) : componentwise_iso (iso.refl F) c = iso.refl (F c) := iso_eq (idpath (ID (F c))) definition componentwise_iso_iso_of_eq (p : F = G) (c : C) : componentwise_iso (iso_of_eq p) c = iso_of_eq (ap010 to_fun_ob p c) := eq.rec_on p !componentwise_iso_id theorem naturality_iso_id {F : C ⇒ C} (η : F ≅ 1) (c : C) : componentwise_iso η (F c) = F (componentwise_iso η c) := comp.cancel_left (to_hom (componentwise_iso η c)) ((naturality (to_hom η)) (to_hom (componentwise_iso η c))) definition natural_map_hom_of_eq (p : F = G) (c : C) : natural_map (hom_of_eq p) c = hom_of_eq (ap010 to_fun_ob p c) := eq.rec_on p idp definition natural_map_inv_of_eq (p : F = G) (c : C) : natural_map (inv_of_eq p) c = hom_of_eq (ap010 to_fun_ob p c)⁻¹ := eq.rec_on p idp definition hom_of_eq_compose_right {H : B ⇒ C} (p : F = G) : hom_of_eq (ap (λx, x ∘f H) p) = hom_of_eq p ∘nf H := eq.rec_on p idp definition inv_of_eq_compose_right {H : B ⇒ C} (p : F = G) : inv_of_eq (ap (λx, x ∘f H) p) = inv_of_eq p ∘nf H := eq.rec_on p idp definition hom_of_eq_compose_left {H : D ⇒ C} (p : F = G) : hom_of_eq (ap (λx, H ∘f x) p) = H ∘fn hom_of_eq p := by induction p; exact !fn_id⁻¹ definition inv_of_eq_compose_left {H : D ⇒ C} (p : F = G) : inv_of_eq (ap (λx, H ∘f x) p) = H ∘fn inv_of_eq p := by induction p; exact !fn_id⁻¹ definition assoc_natural [constructor] (H : C ⇒ D) (G : B ⇒ C) (F : A ⇒ B) : H ∘f (G ∘f F) ⟹ (H ∘f G) ∘f F := change_natural_map (hom_of_eq !functor.assoc) (λa, id) (λa, !natural_map_hom_of_eq ⬝ ap hom_of_eq !ap010_assoc) definition assoc_natural_rev [constructor] (H : C ⇒ D) (G : B ⇒ C) (F : A ⇒ B) : (H ∘f G) ∘f F ⟹ H ∘f (G ∘f F) := change_natural_map (inv_of_eq !functor.assoc) (λa, id) (λa, !natural_map_inv_of_eq ⬝ ap (λx, hom_of_eq x⁻¹) !ap010_assoc) definition assoc_iso [constructor] (H : C ⇒ D) (G : B ⇒ C) (F : A ⇒ B) : H ∘f (G ∘f F) ≅ (H ∘f G) ∘f F := iso.MK (assoc_natural H G F) (assoc_natural_rev H G F) (nat_trans_eq (λa, proof !id_id qed)) (nat_trans_eq (λa, proof !id_id qed)) definition id_left_natural [constructor] (F : C ⇒ D) : functor.id ∘f F ⟹ F := change_natural_map (hom_of_eq !functor.id_left) (λc, id) (λc, by induction F; exact !natural_map_hom_of_eq ⬝ ap hom_of_eq !ap010_functor_mk_eq_constant) definition id_left_natural_rev [constructor] (F : C ⇒ D) : F ⟹ functor.id ∘f F := change_natural_map (inv_of_eq !functor.id_left) (λc, id) (λc, by induction F; exact !natural_map_inv_of_eq ⬝ ap (λx, hom_of_eq x⁻¹) !ap010_functor_mk_eq_constant) definition id_right_natural [constructor] (F : C ⇒ D) : F ∘f functor.id ⟹ F := change_natural_map (hom_of_eq !functor.id_right) (λc, id) (λc, by induction F; exact !natural_map_hom_of_eq ⬝ ap hom_of_eq !ap010_functor_mk_eq_constant) definition id_right_natural_rev [constructor] (F : C ⇒ D) : F ⟹ F ∘f functor.id := change_natural_map (inv_of_eq !functor.id_right) (λc, id) (λc, by induction F; exact !natural_map_inv_of_eq ⬝ ap (λx, hom_of_eq x⁻¹) !ap010_functor_mk_eq_constant) end section variables {C D E : Precategory} {G G' : D ⇒ E} {F F' : C ⇒ D} {J : D ⇒ D} definition is_iso_nf_compose [constructor] (G : D ⇒ E) (η : F ⟹ F') [H : is_iso η] : is_iso (G ∘fn η) := is_iso.mk (G ∘fn @inverse (C ⇒ D) _ _ _ η _) abstract !fn_n_distrib⁻¹ ⬝ ap (λx, G ∘fn x) (@left_inverse (C ⇒ D) _ _ _ η _) ⬝ !fn_id end abstract !fn_n_distrib⁻¹ ⬝ ap (λx, G ∘fn x) (@right_inverse (C ⇒ D) _ _ _ η _) ⬝ !fn_id end definition is_iso_fn_compose [constructor] (η : G ⟹ G') (F : C ⇒ D) [H : is_iso η] : is_iso (η ∘nf F) := is_iso.mk (@inverse (D ⇒ E) _ _ _ η _ ∘nf F) abstract !n_nf_distrib⁻¹ ⬝ ap (λx, x ∘nf F) (@left_inverse (D ⇒ E) _ _ _ η _) ⬝ !id_nf end abstract !n_nf_distrib⁻¹ ⬝ ap (λx, x ∘nf F) (@right_inverse (D ⇒ E) _ _ _ η _) ⬝ !id_nf end definition functor_iso_compose [constructor] (G : D ⇒ E) (η : F ≅ F') : G ∘f F ≅ G ∘f F' := iso.mk _ (is_iso_nf_compose G (to_hom η)) definition iso_functor_compose [constructor] (η : G ≅ G') (F : C ⇒ D) : G ∘f F ≅ G' ∘f F := iso.mk _ (is_iso_fn_compose (to_hom η) F) infixr ` ∘fi ` :62 := functor_iso_compose infixr ` ∘if ` :62 := iso_functor_compose /- TODO: also needs n_nf_distrib and id_nf for these compositions definition nidf_compose [constructor] (η : J ⟹ 1) (F : C ⇒ D) [H : is_iso η] : is_iso (η ∘n1f F) := is_iso.mk (@inverse (D ⇒ D) _ _ _ η _ ∘1nf F) abstract _ end _ definition idnf_compose [constructor] (η : 1 ⟹ J) (F : C ⇒ D) [H : is_iso η] : is_iso (η ∘1nf F) := is_iso.mk _ _ _ definition fnid_compose [constructor] (F : D ⇒ E) (η : J ⟹ 1) [H : is_iso η] : is_iso (F ∘fn1 η) := is_iso.mk _ _ _ definition fidn_compose [constructor] (F : D ⇒ E) (η : 1 ⟹ J) [H : is_iso η] : is_iso (F ∘f1n η) := is_iso.mk _ _ _ -/ end namespace functor variables {C : Precategory} {D : Category} {F G : D ^c C} definition eq_of_iso_ob (η : F ≅ G) (c : C) : F c = G c := by apply eq_of_iso; apply componentwise_iso; exact η local attribute functor.to_fun_hom [reducible] definition eq_of_iso (η : F ≅ G) : F = G := begin fapply functor_eq, {exact (eq_of_iso_ob η)}, {intro c c' f, esimp [eq_of_iso_ob, inv_of_eq, hom_of_eq, eq_of_iso], rewrite [*right_inv iso_of_eq], symmetry, apply @naturality_iso _ _ _ _ _ (iso.struct _) } end definition iso_of_eq_eq_of_iso (η : F ≅ G) : iso_of_eq (eq_of_iso η) = η := begin apply iso_eq, apply nat_trans_eq, intro c, rewrite natural_map_hom_of_eq, esimp [eq_of_iso], rewrite ap010_functor_eq, esimp [hom_of_eq,eq_of_iso_ob], rewrite (right_inv iso_of_eq), end definition eq_of_iso_iso_of_eq (p : F = G) : eq_of_iso (iso_of_eq p) = p := begin apply functor_eq2, intro c, esimp [eq_of_iso], rewrite ap010_functor_eq, esimp [eq_of_iso_ob], rewrite componentwise_iso_iso_of_eq, rewrite (left_inv iso_of_eq) end definition is_univalent (D : Category) (C : Precategory) : is_univalent (D ^c C) := λF G, adjointify _ eq_of_iso iso_of_eq_eq_of_iso eq_of_iso_iso_of_eq end functor definition category_functor [instance] [constructor] (D : Category) (C : Precategory) : category (D ^c C) := category.mk (D ^c C) (functor.is_univalent D C) definition Category_functor [constructor] (D : Category) (C : Precategory) : Category := category.Mk (D ^c C) !category_functor --this definition is only useful if the exponent is a category, -- and the elaborator has trouble with inserting the coercion definition Category_functor' [constructor] (D C : Category) : Category := Category_functor D C namespace ops infixr ` ^c2 `:35 := Category_functor end ops namespace functor variables {C : Precategory} {D : Category} {F G : D ^c C} definition eq_of_pointwise_iso (η : F ⟹ G) (iso : Π(a : C), is_iso (η a)) : F = G := eq_of_iso (natural_iso.mk η iso) definition iso_of_eq_eq_of_pointwise_iso (η : F ⟹ G) (iso : Π(c : C), is_iso (η c)) : iso_of_eq (eq_of_pointwise_iso η iso) = natural_iso.mk η iso := !iso_of_eq_eq_of_iso definition hom_of_eq_eq_of_pointwise_iso (η : F ⟹ G) (iso : Π(c : C), is_iso (η c)) : hom_of_eq (eq_of_pointwise_iso η iso) = η := !hom_of_eq_eq_of_iso definition inv_of_eq_eq_of_pointwise_iso (η : F ⟹ G) (iso : Π(c : C), is_iso (η c)) : inv_of_eq (eq_of_pointwise_iso η iso) = nat_trans_inverse η := !inv_of_eq_eq_of_iso end functor /- functors involving only the functor category (see ..functor.curry for some other functors involving also products) -/ variables {C D I : Precategory} definition constant2_functor [constructor] (F : I ⇒ D ^c C) (c : C) : I ⇒ D := functor.mk (λi, to_fun_ob (F i) c) (λi j f, natural_map (F f) c) abstract (λi, ap010 natural_map !respect_id c ⬝ proof idp qed) end abstract (λi j k g f, ap010 natural_map !respect_comp c) end definition constant2_functor_natural [constructor] (F : I ⇒ D ^c C) {c d : C} (f : c ⟶ d) : constant2_functor F c ⟹ constant2_functor F d := nat_trans.mk (λi, to_fun_hom (F i) f) (λi j k, (naturality (F k) f)⁻¹) definition functor_flip [constructor] (F : I ⇒ D ^c C) : C ⇒ D ^c I := functor.mk (constant2_functor F) @(constant2_functor_natural F) abstract begin intros, apply nat_trans_eq, intro i, esimp, apply respect_id end end abstract begin intros, apply nat_trans_eq, intro i, esimp, apply respect_comp end end definition eval_functor [constructor] (C D : Precategory) (d : D) : C ^c D ⇒ C := begin fapply functor.mk: esimp, { intro F, exact F d}, { intro G F η, exact η d}, { intro F, reflexivity}, { intro H G F η θ, reflexivity}, end definition precomposition_functor [constructor] {C D} (E) (F : C ⇒ D) : E ^c D ⇒ E ^c C := begin fapply functor.mk: esimp, { intro G, exact G ∘f F}, { intro G H η, exact η ∘nf F}, { intro G, reflexivity}, { intro G H I η θ, reflexivity}, end definition faithful_precomposition_functor [instance] {C D E} {H : C ⇒ D} [Hs : essentially_surjective H] : faithful (precomposition_functor E H) := begin intro F G γ δ Hγδ, apply nat_trans_eq, intro b, induction Hs b with Hb, induction Hb with a f, refine naturality_iso_right γ f ⬝ _ ⬝ (naturality_iso_right δ f)⁻¹, apply ap (λ x, _ ∘ natural_map x a ∘ _) Hγδ, end open sigma sigma.ops section fully_faithful_precomposition variables {E : Precategory} {H : C ⇒ D} [Hs : essentially_surjective H] [Hf : full H] {F G : D ⇒ E} (γ : F ∘f H ⟹ G ∘f H) include Hs Hf private definition fully_faithful_precomposition_functor_prop [instance] (b) : is_prop (Σ g, Π a (f : H a ≅ b), γ a = G f⁻¹ⁱ ∘ g ∘ F f) := begin fapply is_prop.mk, intros g h, cases g with g Hg, cases h with h Hh, fapply sigma.dpair_eq_dpair, { induction Hs b with Hb, induction Hb with a0 f, apply comp.cancel_right (F f), apply comp.cancel_left (G f⁻¹ⁱ), apply (Hg a0 f)⁻¹ ⬝ (Hh a0 f) }, apply is_prop.elimo end private definition fully_faithful_precomposition_functor_pair [reducible] (b) : Σ g, Π a (f : H a ≅ b), γ a = G f⁻¹ⁱ ∘ g ∘ F f := begin induction Hs b with Hb, induction Hb with a0 h, fconstructor, exact G h ∘ γ a0 ∘ F h⁻¹ⁱ, intro a f, induction Hf (to_hom (f ⬝i h⁻¹ⁱ)) with k Ek, have is_iso (H k), by rewrite Ek; apply _, refine _ ⬝ !assoc⁻¹, refine _ ⬝ ap (λ x, x ∘ F f) !assoc⁻¹, refine _ ⬝ !assoc, refine _ ⬝ ap (λ x, (G f⁻¹ⁱ ∘ G h) ∘ x) !assoc, do 2 krewrite [-respect_comp], esimp, apply eq_comp_of_inverse_comp_eq, exact ap (λ x, G x ∘ γ a) Ek⁻¹ ⬝ naturality γ k ⬝ ap (λ x, γ a0 ∘ F x) Ek end --TODO speed this up private definition fully_faithful_precomposition_naturality {b b' : carrier D} (f : hom b b') : to_fun_hom G f ∘ (fully_faithful_precomposition_functor_pair γ b).1 = (fully_faithful_precomposition_functor_pair γ b').1 ∘ to_fun_hom F f := begin esimp[fully_faithful_precomposition_functor_pair], induction Hs b with Hb, induction Hb with a h, induction Hs b' with Hb', induction Hb' with a' h', induction Hf (to_hom h'⁻¹ⁱ ∘ f ∘ to_hom h) with k Ek, apply concat, apply assoc, apply concat, apply ap (λ x, x ∘ _), apply concat, apply !respect_comp⁻¹, apply concat, apply ap (λ x, to_fun_hom G x), apply inverse, apply comp_eq_of_eq_inverse_comp, apply Ek, apply respect_comp, apply concat, apply !assoc⁻¹, apply concat, apply ap (λ x, _ ∘ x), apply concat, apply assoc, apply concat, apply ap (λ x, x ∘ _), apply naturality γ, apply !assoc⁻¹, apply concat, apply ap (λ x, _ ∘ _ ∘ x), apply concat, esimp, apply !respect_comp⁻¹, apply concat, apply ap (λ x, to_fun_hom F x), apply comp_inverse_eq_of_eq_comp, apply Ek ⬝ !assoc, apply respect_comp, apply concat, apply assoc, apply concat, apply assoc, apply ap (λ x, x ∘ _) !assoc⁻¹ end definition fully_faithful_precomposition_functor [instance] : fully_faithful (precomposition_functor E H) := begin apply fully_faithful_of_full_of_faithful, { apply faithful_precomposition_functor }, { intro F G γ, esimp at *, fapply image.mk, fconstructor, { intro b, apply (fully_faithful_precomposition_functor_pair γ b).1 }, { intro b b' f, apply fully_faithful_precomposition_naturality }, { fapply nat_trans_eq, intro a, esimp, apply inverse, induction (fully_faithful_precomposition_functor_pair γ (to_fun_ob H a)) with g Hg, esimp, apply concat, apply Hg a (iso.refl (H a)), esimp, apply concat, apply ap (λ x, x ∘ _), apply respect_id, apply concat, apply id_left, apply concat, apply ap (λ x, _ ∘ x), apply respect_id, apply id_right } } end end fully_faithful_precomposition end functor namespace functor section essentially_surjective_precomposition parameters {A B : Precategory} {C : Category} {H : A ⇒ B} [He : is_weak_equivalence H] (F : A ⇒ C) variables {b b' : carrier B} (f : hom b b') include A B C H He F structure essentially_surj_precomp_X (b : carrier B) : Type := (c : carrier C) (k : Π (a : carrier A) (h : H a ≅ b), F a ≅ c) (k_coh : Π {a a'} h h' (f : hom a a'), to_hom h' ∘ (to_fun_hom H f) = to_hom h → to_hom (k a' h') ∘ to_fun_hom F f = to_hom (k a h)) local abbreviation X := essentially_surj_precomp_X local abbreviation X.mk [constructor] := @essentially_surj_precomp_X.mk local abbreviation X.c [unfold 7] := @essentially_surj_precomp_X.c local abbreviation X.k [unfold 7] := @essentially_surj_precomp_X.k local abbreviation X.k_coh [unfold 7] := @essentially_surj_precomp_X.k_coh section variables {c c' : carrier C} (p : c = c') {k : Π (a : carrier A) (h : H a ≅ b), F a ≅ c} {k' : Π (a : carrier A) (h : H a ≅ b), F a ≅ c'} (q : Π (a : carrier A) (h : H a ≅ b), to_hom (k a h ⬝i iso_of_eq p) = to_hom (k' a h)) {k_coh : Π {a a'} h h' (f : hom a a'), to_hom h' ∘ (to_fun_hom H f) = to_hom h → to_hom (k a' h') ∘ to_fun_hom F f = to_hom (k a h)} {k'_coh : Π {a a'} h h' (f : hom a a'), to_hom h' ∘ (to_fun_hom H f) = to_hom h → to_hom (k' a' h') ∘ to_fun_hom F f = to_hom (k' a h)} include c c' p k k' q private theorem X_eq : X.mk c k @k_coh = X.mk c' k' @k'_coh := begin cases p, assert q' : k = k', { apply eq_of_homotopy, intro a, apply eq_of_homotopy, intro h, apply iso_eq, apply !id_left⁻¹ ⬝ q a h }, cases q', apply ap (essentially_surj_precomp_X.mk c' k'), apply is_prop.elim end end open prod.ops sigma.ops private theorem X_prop [instance] : is_prop (X b) := begin induction He.2 b with Hb, cases Hb with a0 Ha0, fapply is_prop.mk, intros f g, cases f with cf kf kf_coh, cases g with cg kg kg_coh, fapply X_eq, { apply eq_of_iso, apply iso.trans, apply iso.symm, apply kf a0 Ha0, apply kg a0 Ha0 }, { intro a h, assert fHf : Σ f : hom a a0, to_hom Ha0 ∘ (to_fun_hom H f) = to_hom h, { fconstructor, apply hom_inv, apply He.1, exact to_hom Ha0⁻¹ⁱ ∘ to_hom h, apply concat, apply ap (λ x, _ ∘ x), apply right_inv (to_fun_hom H), apply comp_inverse_cancel_left }, apply concat, apply ap (λ x, to_hom x ∘ _), apply iso_of_eq_eq_of_iso, apply concat, apply ap (λ x, _ ∘ x), apply (kf_coh h Ha0 fHf.1 fHf.2)⁻¹, apply concat, rotate 1, apply kg_coh h Ha0 fHf.1 fHf.2, apply concat, apply assoc, apply ap (λ x, x ∘ _), apply concat, apply !assoc⁻¹, apply concat, apply ap (λ x, _ ∘ x), apply comp.left_inverse, apply id_right }, end private definition X_inh (b) : X b := begin induction He.2 b with Hb, cases Hb with a0 Ha0, fconstructor, exact F a0, { intro a h, apply to_fun_iso F, apply reflect_iso H, exact h ⬝i Ha0⁻¹ⁱ }, { intros a a' h h' f HH, apply concat, apply !respect_comp⁻¹, apply ap (to_fun_hom F), esimp, rewrite [-HH], apply concat, apply ap (λ x, _ ∘ x), apply inverse, apply left_inv (to_fun_hom H), apply concat, apply !hom_inv_respect_comp⁻¹, apply ap (hom_inv H), apply !assoc⁻¹ } end local abbreviation G0 [reducible] := λ (b), X.c (X_inh b) private definition k := λ b, X.k (X_inh b) private definition k_coh := λ b, @X.k_coh b (X_inh b) private definition X_c_eq_of_eq {b} (t t' : X b) (p : t = t') : X.c t = X.c t' := by cases p; reflexivity private definition X_k_eq_of_eq {b} (t t' : X b) (p : t = t') (a : carrier A) (h : H a ≅ b) : X_c_eq_of_eq t t' p ▸ X.k t a h = X.k t' a h:= by cases p; reflexivity private definition X_phi {b} (t : X b) : X.c t = X.c (X_inh b) := X_c_eq_of_eq _ _ !is_prop.elim private definition X_phi_transp {b} (t : X b) (a : carrier A) (h : H a ≅ b) : (X_phi t) ▸ (X.k t a h) = k b a h := by apply X_k_eq_of_eq t _ !is_prop.elim private definition X_phi_hom_of_eq' {b} (t t' : X b) (p : t = t') (a : carrier A) (h : H a ≅ b) : X.k t' a h ⬝i (iso_of_eq (X_c_eq_of_eq t t' p)⁻¹) = X.k t a h := begin cases p, apply iso_eq, apply id_left end private definition X_phi_hom_of_eq {b} (t : X b) (a : carrier A) (h : H a ≅ b) : to_hom (k b a h ⬝i (iso_of_eq (X_phi t)⁻¹)) = to_hom (X.k t a h) := begin apply ap to_hom, apply X_phi_hom_of_eq' end structure essentially_surj_precomp_Y {b b' : carrier B} (f : hom b b') : Type := (g : hom (G0 b) (G0 b')) (Hg : Π {a a' : carrier A} h h' (l : hom a a'), to_hom h' ∘ to_fun_hom H l = f ∘ to_hom h → to_hom (k b' a' h') ∘ to_fun_hom F l = g ∘ to_hom (k b a h)) local abbreviation Y := @essentially_surj_precomp_Y local abbreviation Y.mk := @essentially_surj_precomp_Y.mk local abbreviation Y.g := @essentially_surj_precomp_Y.g section variables {g : hom (G0 b) (G0 b')} {g' : hom (G0 b) (G0 b')} (p : g = g') (Hg : Π {a a' : carrier A} h h' (l : hom a a'), to_hom h' ∘ to_fun_hom H l = f ∘ to_hom h → to_hom (k b' a' h') ∘ to_fun_hom F l = g ∘ to_hom (k b a h)) (Hg' : Π {a a' : carrier A} h h' (l : hom a a'), to_hom h' ∘ to_fun_hom H l = f ∘ to_hom h → to_hom (k b' a' h') ∘ to_fun_hom F l = g' ∘ to_hom (k b a h)) include p private theorem Y_eq : Y.mk g @Hg = Y.mk g' @Hg' := begin cases p, apply ap (Y.mk g'), apply is_prop.elim, end end private theorem Y_prop [instance] : is_prop (Y f) := begin induction He.2 b with Hb, cases Hb with a0 h0, induction He.2 b' with Hb', cases Hb' with a0' h0', fapply is_prop.mk, intros, cases x with g0 Hg0, cases y with g1 Hg1, apply Y_eq, assert l0Hl0 : Σ l0 : hom a0 a0', to_hom h0' ∘ to_fun_hom H l0 = f ∘ to_hom h0, { fconstructor, apply hom_inv, apply He.1, exact to_hom h0'⁻¹ⁱ ∘ f ∘ to_hom h0, apply concat, apply ap (λ x, _ ∘ x), apply right_inv (to_fun_hom H), apply comp_inverse_cancel_left }, apply comp.cancel_right (to_hom (k b a0 h0)), apply concat, apply inverse, apply Hg0 h0 h0' l0Hl0.1 l0Hl0.2, apply Hg1 h0 h0' l0Hl0.1 l0Hl0.2 end private definition Y_inh : Y f := begin induction He.2 b with Hb, cases Hb with a0 h0, induction He.2 b' with Hb', cases Hb' with a0' h0', assert l0Hl0 : Σ l0 : hom a0 a0', to_hom h0' ∘ to_fun_hom H l0 = f ∘ to_hom h0, { fconstructor, apply hom_inv, apply He.1, exact to_hom h0'⁻¹ⁱ ∘ f ∘ to_hom h0, apply concat, apply ap (λ x, _ ∘ x), apply right_inv (to_fun_hom H), apply comp_inverse_cancel_left }, fapply Y.mk, { refine to_hom (k b' a0' h0') ∘ _ ∘ to_hom (k b a0 h0)⁻¹ⁱ, apply to_fun_hom F, apply l0Hl0.1 }, { intros a a' h h' l Hl, esimp, apply inverse, assert mHm : Σ m, to_hom h0 ∘ to_fun_hom H m = to_hom h, { fconstructor, apply hom_inv, apply He.1, exact to_hom h0⁻¹ⁱ ∘ to_hom h, apply concat, apply ap (λ x, _ ∘ x), apply right_inv (to_fun_hom H), apply comp_inverse_cancel_left }, assert m'Hm' : Σ m', to_hom h0' ∘ to_fun_hom H m' = to_hom h', { fconstructor, apply hom_inv, apply He.1, exact to_hom h0'⁻¹ⁱ ∘ to_hom h', apply concat, apply ap (λ x, _ ∘ x), apply right_inv (to_fun_hom H), apply comp_inverse_cancel_left }, assert m'l0lm : l0Hl0.1 ∘ mHm.1 = m'Hm'.1 ∘ l, { apply faithful_of_fully_faithful, apply He.1, apply concat, apply respect_comp, apply comp.cancel_left (to_hom h0'), apply inverse, apply concat, apply ap (λ x, _ ∘ x), apply respect_comp, apply concat, apply assoc, apply concat, apply ap (λ x, x ∘ _), apply m'Hm'.2, apply concat, apply Hl, apply concat, apply ap (λ x, _ ∘ x), apply mHm.2⁻¹, apply concat, apply assoc, apply concat, apply ap (λ x, x ∘ _), apply l0Hl0.2⁻¹, apply !assoc⁻¹ }, apply concat, apply !assoc⁻¹, apply concat, apply ap (λ x, _ ∘ x), apply !assoc⁻¹, apply concat, apply ap (λ x, _ ∘ _ ∘ x), apply inverse_comp_eq_of_eq_comp, apply inverse, apply k_coh b h h0, apply mHm.2, apply concat, apply ap (λ x, _ ∘ x), apply concat, apply !respect_comp⁻¹, apply concat, apply ap (to_fun_hom F), apply m'l0lm, apply respect_comp, apply concat, apply assoc, apply ap (λ x, x ∘ _), apply k_coh, apply m'Hm'.2 } end private definition G_hom [constructor] := λ {b b'} (f : hom b b'), Y.g (Y_inh f) private definition G_hom_coh := λ {b b'} (f : hom b b'), @essentially_surj_precomp_Y.Hg b b' f (Y_inh f) private theorem G_hom_id (b : carrier B) : G_hom (ID b) = ID (G0 b) := begin cases He with He1 He2, esimp[G_hom, Y_inh], induction He2 b with Hb, cases Hb with a h, --why do i need to destruct He? apply concat, apply ap (λ x, _ ∘ x ∘ _), apply concat, apply ap (to_fun_hom F), apply concat, apply ap (hom_inv H), apply inverse_comp_id_comp, apply hom_inv_respect_id, apply respect_id, apply comp_id_comp_inverse end private theorem G_hom_comp {b0 b1 b2 : carrier B} (g : hom b1 b2) (f : hom b0 b1) : G_hom (g ∘ f) = G_hom g ∘ G_hom f := begin cases He with He1 He2, esimp[G_hom, Y_inh], induction He2 b0 with Hb0, cases Hb0 with a0 h0, induction He2 b1 with Hb1, cases Hb1 with a1 h1, induction He2 b2 with Hb2, cases Hb2 with b2 h2, apply concat, apply assoc, apply concat, rotate 1, apply !assoc⁻¹, apply concat, rotate 1, apply !assoc⁻¹, apply ap (λ x, x ∘ _), apply inverse, apply concat, apply ap (λ x, x ∘ _), apply concat, apply !assoc⁻¹, apply ap (λ x, _ ∘ x), apply concat, apply !assoc⁻¹, apply ap (λ x, _ ∘ x), apply comp.left_inverse, apply concat, apply !assoc⁻¹, apply ap (λ x, _ ∘ x), apply concat, apply ap (λ x, x ∘ _), apply id_right, apply concat, apply !respect_comp⁻¹, apply ap (to_fun_hom F), apply concat, apply !hom_inv_respect_comp⁻¹, apply ap (hom_inv H), apply concat, apply ap (λ x, x ∘ _), apply assoc, apply concat, apply assoc, apply concat, apply ap (λ x, x ∘ _), apply comp_inverse_cancel_right, apply concat, apply !assoc⁻¹, apply ap (λ x, _ ∘ x), apply assoc, end private definition G_functor : B ⇒ C := begin fconstructor, { exact G0 }, { intro b b' f, exact G_hom f }, { intro b, apply G_hom_id }, { intro a b c g f, apply G_hom_comp } end private definition XF (a0 : carrier A) : X (H a0) := begin fconstructor, { exact F a0 }, { intro a h, apply to_fun_iso F, apply reflect_iso, apply He.1, exact h }, { intro a a' h h' f l, esimp, apply concat, apply !respect_comp⁻¹, apply ap (to_fun_hom F), apply inverse, apply concat, apply ap (hom_inv H) l⁻¹, apply concat, apply hom_inv_respect_comp, apply ap (λ x, _ ∘ x), apply left_inv } end private definition G0_H_eq_F (a0 : carrier A) : G0 (H a0) = F a0 := begin apply inverse, apply X_phi (XF a0) end private theorem G_hom_H_eq_F {a0 a0' : carrier A} (f0 : hom a0 a0') : hom_of_eq (G0_H_eq_F a0') ∘ G_hom (to_fun_hom H f0) ∘ inv_of_eq (G0_H_eq_F a0) = to_fun_hom F f0 := begin apply comp_eq_of_eq_inverse_comp, apply comp_inverse_eq_of_eq_comp, apply concat, apply ap essentially_surj_precomp_Y.g, apply is_prop.elim, fconstructor, { exact (inv_of_eq (G0_H_eq_F a0') ∘ to_fun_hom F f0) ∘ hom_of_eq (G0_H_eq_F a0) }, { intros a a' h h' l α, esimp[G0_H_eq_F], apply inverse, apply concat, apply !assoc⁻¹, apply concat, apply ap (λ x, _ ∘ x), apply X_phi_hom_of_eq, apply concat, apply !assoc⁻¹, apply inverse_comp_eq_of_eq_comp, apply inverse, apply concat, apply assoc, apply concat, apply ap (λ x, x ∘ _), apply X_phi_hom_of_eq, esimp[XF], refine !respect_comp⁻¹ ⬝ ap (to_fun_hom F) _ ⬝ !respect_comp, apply eq_of_fn_eq_fn' (to_fun_hom H), refine !respect_comp ⬝ _ ⬝ !respect_comp⁻¹, apply concat, apply ap (λ x, x ∘ _) !(right_inv (to_fun_hom H)), apply concat, rotate 1, apply ap (λ x, _ ∘ x) !(right_inv (to_fun_hom H))⁻¹, exact α }, reflexivity end end essentially_surjective_precomposition definition essentially_surjective_precomposition_functor [instance] {A B : Precategory} (C : Category) (H : A ⇒ B) [He : is_weak_equivalence H] : essentially_surjective (precomposition_functor C H) := begin intro F, apply tr, fconstructor, apply G_functor F, apply iso_of_eq, fapply functor_eq, { intro a, esimp[G_functor], exact G0_H_eq_F F a }, { intro a b f, exact G_hom_H_eq_F F f } end variables {C D E : Precategory} definition postcomposition_functor [constructor] {C D} (E) (F : C ⇒ D) : C ^c E ⇒ D ^c E := begin fapply functor.mk: esimp, { intro G, exact F ∘f G}, { intro G H η, exact F ∘fn η}, { intro G, apply fn_id}, { intro G H I η θ, apply fn_n_distrib}, end definition constant_diagram [constructor] (C D) : C ⇒ C ^c D := begin fapply functor.mk: esimp, { intro c, exact constant_functor D c}, { intro c d f, exact constant_nat_trans D f}, { intro c, fapply nat_trans_eq, reflexivity}, { intro c d e g f, fapply nat_trans_eq, reflexivity}, end definition opposite_functor_opposite_left [constructor] (C D : Precategory) : (C ^c D)ᵒᵖ ⇒ Cᵒᵖ ^c Dᵒᵖ := begin fapply functor.mk: esimp, { exact opposite_functor}, { intro F G, exact opposite_nat_trans}, { intro F, apply nat_trans_eq, reflexivity}, { intro u v w g f, apply nat_trans_eq, reflexivity} end definition opposite_functor_opposite_right [constructor] (C D : Precategory) : Cᵒᵖ ^c Dᵒᵖ ⇒ (C ^c D)ᵒᵖ := begin fapply functor.mk: esimp, { exact opposite_functor_rev}, { apply @opposite_rev_nat_trans}, { intro F, apply nat_trans_eq, intro d, reflexivity}, { intro F G H η θ, apply nat_trans_eq, intro d, reflexivity} end definition constant_diagram_opposite [constructor] (C D) : (constant_diagram C D)ᵒᵖᶠ = opposite_functor_opposite_right C D ∘f constant_diagram Cᵒᵖ Dᵒᵖ := begin fapply functor_eq, { reflexivity }, { intro c c' f, esimp at *, refine !nat_trans.id_right ⬝ !nat_trans.id_left ⬝ _, apply nat_trans_eq, intro d, reflexivity } end end functor