/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Floris van Doorn Coherence conditions for operations on squares -/ import .square open equiv namespace eq variables {A B C : Type} {a a' a'' a₀₀ a₂₀ a₄₀ a₀₂ a₂₂ a₂₄ a₀₄ a₄₂ a₄₄ a₁ a₂ a₃ a₄ : A} {f : A → B} {b : B} {c : C} /-a₀₀-/ {p₁₀ p₁₀' : a₀₀ = a₂₀} /-a₂₀-/ {p₃₀ : a₂₀ = a₄₀} /-a₄₀-/ {p₀₁ p₀₁' : a₀₀ = a₀₂} /-s₁₁-/ {p₂₁ p₂₁' : a₂₀ = a₂₂} /-s₃₁-/ {p₄₁ : a₄₀ = a₄₂} /-a₀₂-/ {p₁₂ p₁₂' : a₀₂ = a₂₂} /-a₂₂-/ {p₃₂ : a₂₂ = a₄₂} /-a₄₂-/ {p₀₃ : a₀₂ = a₀₄} /-s₁₃-/ {p₂₃ : a₂₂ = a₂₄} /-s₃₃-/ {p₄₃ : a₄₂ = a₄₄} /-a₀₄-/ {p₁₄ : a₀₄ = a₂₄} /-a₂₄-/ {p₃₄ : a₂₄ = a₄₄} /-a₄₄-/ theorem whisker_bl_whisker_tl_eq (p : a = a') : whisker_bl p (whisker_tl p ids) = con.right_inv p ⬝ph vrfl := by induction p; reflexivity theorem ap_is_constant_natural_square {g : B → C} {f : A → B} (H : Πa, g (f a) = c) (p : a = a') : (ap_is_constant H p)⁻¹ ⬝ph natural_square H p ⬝hp ap_constant p c = whisker_bl (H a') (whisker_tl (H a) ids) := begin induction p, esimp, rewrite inv_inv, rewrite whisker_bl_whisker_tl_eq end definition inv_ph_eq_of_eq_ph {p : a₀₀ = a₀₂} {r : p₀₁ = p} {s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁} {s₁₁' : square p₁₀ p₁₂ p p₂₁} (t : s₁₁ = r ⬝ph s₁₁') : r⁻¹ ⬝ph s₁₁ = s₁₁' := by induction r; exact t -- the following is used for torus.elim_surf theorem whisker_square_aps_eq {q₁₀ : f a₀₀ = f a₂₀} {q₀₁ : f a₀₀ = f a₀₂} {q₂₁ : f a₂₀ = f a₂₂} {q₁₂ : f a₀₂ = f a₂₂} {r₁₀ : ap f p₁₀ = q₁₀} {r₀₁ : ap f p₀₁ = q₀₁} {r₂₁ : ap f p₂₁ = q₂₁} {r₁₂ : ap f p₁₂ = q₁₂} {s₁₁ : p₁₀ ⬝ p₂₁ = p₀₁ ⬝ p₁₂} {t₁₁ : square q₁₀ q₁₂ q₀₁ q₂₁} (u : square (ap02 f s₁₁) (eq_of_square t₁₁) (ap_con f p₁₀ p₂₁ ⬝ (r₁₀ ◾ r₂₁)) (ap_con f p₀₁ p₁₂ ⬝ (r₀₁ ◾ r₁₂))) : whisker_square r₁₀ r₁₂ r₀₁ r₂₁ (aps f (square_of_eq s₁₁)) = t₁₁ := begin induction r₁₀, induction r₀₁, induction r₁₂, induction r₂₁, induction p₁₂, induction p₁₀, induction p₂₁, esimp at *, induction s₁₁, esimp at *, esimp [square_of_eq], apply eq_of_fn_eq_fn !square_equiv_eq, esimp, exact (eq_bot_of_square u)⁻¹ end end eq