/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura, Jeremy Avigad, Floris van Doorn Additional declarations/theorems about equality. See also init.datatypes and init.logic. -/ open eq.ops namespace eq variables {A B : Type} {a a' a₁ a₂ a₃ a₄ : A} theorem irrel (H₁ H₂ : a = a') : H₁ = H₂ := !proof_irrel theorem id_refl (H₁ : a = a) : H₁ = (eq.refl a) := rfl theorem rec_on_id {B : A → Type} (H : a = a) (b : B a) : eq.rec_on H b = b := rfl theorem rec_on_constant (H : a = a') {B : Type} (b : B) : eq.rec_on H b = b := eq.drec_on H rfl theorem rec_on_constant2 (H₁ : a₁ = a₂) (H₂ : a₃ = a₄) (b : B) : eq.rec_on H₁ b = eq.rec_on H₂ b := rec_on_constant H₁ b ⬝ (rec_on_constant H₂ b)⁻¹ theorem rec_on_irrel_arg {f : A → B} {D : B → Type} (H : a = a') (H' : f a = f a') (b : D (f a)) : eq.rec_on H b = eq.rec_on H' b := eq.drec_on H (λ(H' : f a = f a), !rec_on_id⁻¹) H' theorem rec_on_irrel {a a' : A} {D : A → Type} (H H' : a = a') (b : D a) : eq.drec_on H b = eq.drec_on H' b := proof_irrel H H' ▸ rfl theorem rec_on_comp {a b c : A} {P : A → Type} (H₁ : a = b) (H₂ : b = c) (u : P a) : eq.rec_on H₂ (eq.rec_on H₁ u) = eq.rec_on (trans H₁ H₂) u := (show ∀ H₂ : b = c, eq.rec_on H₂ (eq.rec_on H₁ u) = eq.rec_on (trans H₁ H₂) u, from eq.drec_on H₂ (take (H₂ : b = b), rec_on_id H₂ _)) H₂ end eq open eq section variables {A B C D E F : Type} variables {a a' : A} {b b' : B} {c c' : C} {d d' : D} {e e' : E} theorem congr_arg2 (f : A → B → C) (Ha : a = a') (Hb : b = b') : f a b = f a' b' := by substvars theorem congr_arg3 (f : A → B → C → D) (Ha : a = a') (Hb : b = b') (Hc : c = c') : f a b c = f a' b' c' := by substvars theorem congr_arg4 (f : A → B → C → D → E) (Ha : a = a') (Hb : b = b') (Hc : c = c') (Hd : d = d') : f a b c d = f a' b' c' d' := by substvars theorem congr_arg5 (f : A → B → C → D → E → F) (Ha : a = a') (Hb : b = b') (Hc : c = c') (Hd : d = d') (He : e = e') : f a b c d e = f a' b' c' d' e' := by substvars theorem congr2 (f f' : A → B → C) (Hf : f = f') (Ha : a = a') (Hb : b = b') : f a b = f' a' b' := by substvars theorem congr3 (f f' : A → B → C → D) (Hf : f = f') (Ha : a = a') (Hb : b = b') (Hc : c = c') : f a b c = f' a' b' c' := by substvars theorem congr4 (f f' : A → B → C → D → E) (Hf : f = f') (Ha : a = a') (Hb : b = b') (Hc : c = c') (Hd : d = d') : f a b c d = f' a' b' c' d' := by substvars theorem congr5 (f f' : A → B → C → D → E → F) (Hf : f = f') (Ha : a = a') (Hb : b = b') (Hc : c = c') (Hd : d = d') (He : e = e') : f a b c d e = f' a' b' c' d' e' := by substvars end theorem equal_f {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) : ∀x, f x = g x := take x, congr_fun H x section variables {a b c : Prop} theorem eqmp (H₁ : a = b) (H₂ : a) : b := H₁ ▸ H₂ theorem eqmpr (H₁ : a = b) (H₂ : b) : a := H₁⁻¹ ▸ H₂ theorem imp_trans (H₁ : a → b) (H₂ : b → c) : a → c := assume Ha, H₂ (H₁ Ha) theorem imp_eq_trans (H₁ : a → b) (H₂ : b = c) : a → c := assume Ha, H₂ ▸ (H₁ Ha) theorem eq_imp_trans (H₁ : a = b) (H₂ : b → c) : a → c := assume Ha, H₂ (H₁ ▸ Ha) end