/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura, Jeremy Avigad Combinators for finite sets. -/ import data.finset.basic logic.identities open list quot subtype decidable perm function namespace finset /- image (corresponds to map on list) -/ section image variables {A B : Type} variable [h : decidable_eq B] include h definition image (f : A → B) (s : finset A) : finset B := quot.lift_on s (λ l, to_finset (list.map f (elt_of l))) (λ l₁ l₂ p, quot.sound (perm_erase_dup_of_perm (perm_map _ p))) notation [priority finset.prio] f `'[`:max a `]` := image f a theorem image_empty (f : A → B) : image f ∅ = ∅ := rfl theorem mem_image_of_mem (f : A → B) {s : finset A} {a : A} : a ∈ s → f a ∈ image f s := quot.induction_on s (take l, assume H : a ∈ elt_of l, mem_to_finset (mem_map f H)) theorem mem_image {f : A → B} {s : finset A} {a : A} {b : B} (H1 : a ∈ s) (H2 : f a = b) : b ∈ image f s := eq.subst H2 (mem_image_of_mem f H1) theorem exists_of_mem_image {f : A → B} {s : finset A} {b : B} : b ∈ image f s → ∃a, a ∈ s ∧ f a = b := quot.induction_on s (take l, assume H : b ∈ erase_dup (list.map f (elt_of l)), exists_of_mem_map (mem_of_mem_erase_dup H)) theorem mem_image_iff (f : A → B) {s : finset A} {y : B} : y ∈ image f s ↔ ∃x, x ∈ s ∧ f x = y := iff.intro exists_of_mem_image (assume H, obtain x (H₁ : x ∈ s) (H₂ : f x = y), from H, mem_image H₁ H₂) theorem mem_image_eq (f : A → B) {s : finset A} {y : B} : y ∈ image f s = ∃x, x ∈ s ∧ f x = y := propext (mem_image_iff f) theorem mem_image_of_mem_image_of_subset {f : A → B} {s t : finset A} {y : B} (H1 : y ∈ image f s) (H2 : s ⊆ t) : y ∈ image f t := obtain x (H3: x ∈ s) (H4 : f x = y), from exists_of_mem_image H1, have H5 : x ∈ t, from mem_of_subset_of_mem H2 H3, show y ∈ image f t, from mem_image H5 H4 theorem image_insert [h' : decidable_eq A] (f : A → B) (s : finset A) (a : A) : image f (insert a s) = insert (f a) (image f s) := ext (take y, iff.intro (assume H : y ∈ image f (insert a s), obtain x (H1l : x ∈ insert a s) (H1r :f x = y), from exists_of_mem_image H, have x = a ∨ x ∈ s, from eq_or_mem_of_mem_insert H1l, or.elim this (suppose x = a, have f a = y, from eq.subst this H1r, show y ∈ insert (f a) (image f s), from eq.subst this !mem_insert) (suppose x ∈ s, have f x ∈ image f s, from mem_image_of_mem f this, show y ∈ insert (f a) (image f s), from eq.subst H1r (mem_insert_of_mem _ this))) (suppose y ∈ insert (f a) (image f s), have y = f a ∨ y ∈ image f s, from eq_or_mem_of_mem_insert this, or.elim this (suppose y = f a, have f a ∈ image f (insert a s), from mem_image_of_mem f !mem_insert, show y ∈ image f (insert a s), from eq.subst (eq.symm `y = f a`) this) (suppose y ∈ image f s, show y ∈ image f (insert a s), from mem_image_of_mem_image_of_subset this !subset_insert))) lemma image_compose {C : Type} [deceqC : decidable_eq C] {f : B → C} {g : A → B} {s : finset A} : image (f∘g) s = image f (image g s) := ext (take z, iff.intro (suppose z ∈ image (f∘g) s, obtain x (Hx : x ∈ s) (Hgfx : f (g x) = z), from exists_of_mem_image this, by rewrite -Hgfx; apply mem_image_of_mem _ (mem_image_of_mem _ Hx)) (suppose z ∈ image f (image g s), obtain y (Hy : y ∈ image g s) (Hfy : f y = z), from exists_of_mem_image this, obtain x (Hx : x ∈ s) (Hgx : g x = y), from exists_of_mem_image Hy, mem_image Hx (by esimp; rewrite [Hgx, Hfy]))) lemma image_subset {a b : finset A} (f : A → B) (H : a ⊆ b) : f '[a] ⊆ f '[b] := subset_of_forall (take y, assume Hy : y ∈ f '[a], obtain x (Hx₁ : x ∈ a) (Hx₂ : f x = y), from exists_of_mem_image Hy, mem_image (mem_of_subset_of_mem H Hx₁) Hx₂) theorem image_union [h' : decidable_eq A] (f : A → B) (s t : finset A) : image f (s ∪ t) = image f s ∪ image f t := ext (take y, iff.intro (assume H : y ∈ image f (s ∪ t), obtain x [(xst : x ∈ s ∪ t) (fxy : f x = y)], from exists_of_mem_image H, or.elim (mem_or_mem_of_mem_union xst) (assume xs, mem_union_l (mem_image xs fxy)) (assume xt, mem_union_r (mem_image xt fxy))) (assume H : y ∈ image f s ∪ image f t, or.elim (mem_or_mem_of_mem_union H) (assume yifs : y ∈ image f s, obtain x [(xs : x ∈ s) (fxy : f x = y)], from exists_of_mem_image yifs, mem_image (mem_union_l xs) fxy) (assume yift : y ∈ image f t, obtain x [(xt : x ∈ t) (fxy : f x = y)], from exists_of_mem_image yift, mem_image (mem_union_r xt) fxy))) end image /- separation and set-builder notation -/ section sep variables {A : Type} [deceq : decidable_eq A] include deceq variables (p : A → Prop) [decp : decidable_pred p] (s : finset A) {x : A} include decp definition sep : finset A := quot.lift_on s (λl, to_finset_of_nodup (list.filter p (subtype.elt_of l)) (list.nodup_filter p (subtype.has_property l))) (λ l₁ l₂ u, quot.sound (perm.perm_filter u)) notation [priority finset.prio] `{` binder ` ∈ ` s ` | ` r:(scoped:1 p, sep p s) `}` := r theorem sep_empty : sep p ∅ = ∅ := rfl variables {p s} theorem of_mem_sep : x ∈ sep p s → p x := quot.induction_on s (take l, list.of_mem_filter) theorem mem_of_mem_sep : x ∈ sep p s → x ∈ s := quot.induction_on s (take l, list.mem_of_mem_filter) theorem mem_sep_of_mem {x : A} : x ∈ s → p x → x ∈ sep p s := quot.induction_on s (take l, list.mem_filter_of_mem) variables (p s) theorem mem_sep_iff : x ∈ sep p s ↔ x ∈ s ∧ p x := iff.intro (assume H, and.intro (mem_of_mem_sep H) (of_mem_sep H)) (assume H, mem_sep_of_mem (and.left H) (and.right H)) theorem mem_sep_eq : x ∈ sep p s = (x ∈ s ∧ p x) := propext !mem_sep_iff variable t : finset A theorem mem_sep_union_iff : x ∈ sep p (s ∪ t) ↔ x ∈ sep p s ∨ x ∈ sep p t := by rewrite [*mem_sep_iff, mem_union_iff, and.right_distrib] end sep section variables {A : Type} [deceqA : decidable_eq A] include deceqA theorem eq_sep_of_subset {s t : finset A} (ssubt : s ⊆ t) : s = {x ∈ t | x ∈ s} := ext (take x, iff.intro (suppose x ∈ s, mem_sep_of_mem (mem_of_subset_of_mem ssubt this) this) (suppose x ∈ {x ∈ t | x ∈ s}, of_mem_sep this)) end /- set difference -/ section diff variables {A : Type} [deceq : decidable_eq A] include deceq definition diff (s t : finset A) : finset A := {x ∈ s | x ∉ t} infix [priority finset.prio] ` \ `:70 := diff theorem mem_of_mem_diff {s t : finset A} {x : A} (H : x ∈ s \ t) : x ∈ s := mem_of_mem_sep H theorem not_mem_of_mem_diff {s t : finset A} {x : A} (H : x ∈ s \ t) : x ∉ t := of_mem_sep H theorem mem_diff {s t : finset A} {x : A} (H1 : x ∈ s) (H2 : x ∉ t) : x ∈ s \ t := mem_sep_of_mem H1 H2 theorem mem_diff_iff (s t : finset A) (x : A) : x ∈ s \ t ↔ x ∈ s ∧ x ∉ t := iff.intro (assume H, and.intro (mem_of_mem_diff H) (not_mem_of_mem_diff H)) (assume H, mem_diff (and.left H) (and.right H)) theorem mem_diff_eq (s t : finset A) (x : A) : x ∈ s \ t = (x ∈ s ∧ x ∉ t) := propext !mem_diff_iff theorem union_diff_cancel {s t : finset A} (H : s ⊆ t) : s ∪ (t \ s) = t := ext (take x, iff.intro (suppose x ∈ s ∪ (t \ s), or.elim (mem_or_mem_of_mem_union this) (suppose x ∈ s, mem_of_subset_of_mem H this) (suppose x ∈ t \ s, mem_of_mem_diff this)) (suppose x ∈ t, decidable.by_cases (suppose x ∈ s, mem_union_left _ this) (suppose x ∉ s, mem_union_right _ (mem_diff `x ∈ t` this)))) theorem diff_union_cancel {s t : finset A} (H : s ⊆ t) : (t \ s) ∪ s = t := eq.subst !union_comm (!union_diff_cancel H) end diff /- set complement -/ section complement variables {A : Type} [deceqA : decidable_eq A] [h : fintype A] include deceqA h definition complement (s : finset A) : finset A := univ \ s prefix [priority finset.prio] - := complement theorem mem_complement {s : finset A} {x : A} (H : x ∉ s) : x ∈ -s := mem_diff !mem_univ H theorem not_mem_of_mem_complement {s : finset A} {x : A} (H : x ∈ -s) : x ∉ s := not_mem_of_mem_diff H theorem mem_complement_iff (s : finset A) (x : A) : x ∈ -s ↔ x ∉ s := iff.intro not_mem_of_mem_complement mem_complement section open classical theorem union_eq_comp_comp_inter_comp (s t : finset A) : s ∪ t = -(-s ∩ -t) := ext (take x, by rewrite [mem_union_iff, mem_complement_iff, mem_inter_iff, *mem_complement_iff, or_iff_not_and_not]) theorem inter_eq_comp_comp_union_comp (s t : finset A) : s ∩ t = -(-s ∪ -t) := ext (take x, by rewrite [mem_inter_iff, mem_complement_iff, mem_union_iff, *mem_complement_iff, and_iff_not_or_not]) end end complement /- all -/ section all variables {A : Type} definition all (s : finset A) (p : A → Prop) : Prop := quot.lift_on s (λ l, all (elt_of l) p) (λ l₁ l₂ p, foldr_eq_of_perm (λ a₁ a₂ q, propext !and.left_comm) p true) theorem all_empty (p : A → Prop) : all ∅ p = true := rfl theorem of_mem_of_all {p : A → Prop} {a : A} {s : finset A} : a ∈ s → all s p → p a := quot.induction_on s (λ l i h, list.of_mem_of_all i h) theorem forall_of_all {p : A → Prop} {s : finset A} (H : all s p) : ∀{a}, a ∈ s → p a := λ a H', of_mem_of_all H' H theorem all_of_forall {p : A → Prop} {s : finset A} : (∀a, a ∈ s → p a) → all s p := quot.induction_on s (λ l H, list.all_of_forall H) theorem all_iff_forall (p : A → Prop) (s : finset A) : all s p ↔ (∀a, a ∈ s → p a) := iff.intro forall_of_all all_of_forall definition decidable_all [instance] (p : A → Prop) [h : decidable_pred p] (s : finset A) : decidable (all s p) := quot.rec_on_subsingleton s (λ l, list.decidable_all p (elt_of l)) theorem all_implies {p q : A → Prop} {s : finset A} : all s p → (∀ x, p x → q x) → all s q := quot.induction_on s (λ l h₁ h₂, list.all_implies h₁ h₂) variable [h : decidable_eq A] include h theorem all_union {p : A → Prop} {s₁ s₂ : finset A} : all s₁ p → all s₂ p → all (s₁ ∪ s₂) p := quot.induction_on₂ s₁ s₂ (λ l₁ l₂ a₁ a₂, all_union a₁ a₂) theorem all_of_all_union_left {p : A → Prop} {s₁ s₂ : finset A} : all (s₁ ∪ s₂) p → all s₁ p := quot.induction_on₂ s₁ s₂ (λ l₁ l₂ a, list.all_of_all_union_left a) theorem all_of_all_union_right {p : A → Prop} {s₁ s₂ : finset A} : all (s₁ ∪ s₂) p → all s₂ p := quot.induction_on₂ s₁ s₂ (λ l₁ l₂ a, list.all_of_all_union_right a) theorem all_insert_of_all {p : A → Prop} {a : A} {s : finset A} : p a → all s p → all (insert a s) p := quot.induction_on s (λ l h₁ h₂, list.all_insert_of_all h₁ h₂) theorem all_erase_of_all {p : A → Prop} (a : A) {s : finset A}: all s p → all (erase a s) p := quot.induction_on s (λ l h, list.all_erase_of_all a h) theorem all_inter_of_all_left {p : A → Prop} {s₁ : finset A} (s₂ : finset A) : all s₁ p → all (s₁ ∩ s₂) p := quot.induction_on₂ s₁ s₂ (λ l₁ l₂ h, list.all_inter_of_all_left _ h) theorem all_inter_of_all_right {p : A → Prop} {s₁ : finset A} (s₂ : finset A) : all s₂ p → all (s₁ ∩ s₂) p := quot.induction_on₂ s₁ s₂ (λ l₁ l₂ h, list.all_inter_of_all_right _ h) theorem subset_iff_all (s t : finset A) : s ⊆ t ↔ all s (λ x, x ∈ t) := iff.intro (suppose s ⊆ t, all_of_forall (take x, suppose x ∈ s, mem_of_subset_of_mem `s ⊆ t` `x ∈ s`)) (suppose all s (λ x, x ∈ t), subset_of_forall (take x, suppose x ∈ s, of_mem_of_all `x ∈ s` `all s (λ x, x ∈ t)`)) definition decidable_subset [instance] (s t : finset A) : decidable (s ⊆ t) := decidable_of_decidable_of_iff _ (iff.symm !subset_iff_all) end all /- any -/ section any variables {A : Type} definition any (s : finset A) (p : A → Prop) : Prop := quot.lift_on s (λ l, any (elt_of l) p) (λ l₁ l₂ p, foldr_eq_of_perm (λ a₁ a₂ q, propext !or.left_comm) p false) theorem any_empty (p : A → Prop) : any ∅ p = false := rfl theorem exists_of_any {p : A → Prop} {s : finset A} : any s p → ∃a, a ∈ s ∧ p a := quot.induction_on s (λ l H, list.exists_of_any H) theorem any_of_mem {p : A → Prop} {s : finset A} {a : A} : a ∈ s → p a → any s p := quot.induction_on s (λ l H1 H2, list.any_of_mem H1 H2) theorem any_of_exists {p : A → Prop} {s : finset A} (H : ∃a, a ∈ s ∧ p a) : any s p := obtain a H₁ H₂, from H, any_of_mem H₁ H₂ theorem any_iff_exists (p : A → Prop) (s : finset A) : any s p ↔ (∃a, a ∈ s ∧ p a) := iff.intro exists_of_any any_of_exists theorem any_of_insert [h : decidable_eq A] {p : A → Prop} (s : finset A) {a : A} (H : p a) : any (insert a s) p := any_of_mem (mem_insert a s) H theorem any_of_insert_right [h : decidable_eq A] {p : A → Prop} {s : finset A} (a : A) (H : any s p) : any (insert a s) p := obtain b (H₁ : b ∈ s) (H₂ : p b), from exists_of_any H, any_of_mem (mem_insert_of_mem a H₁) H₂ definition decidable_any [instance] (p : A → Prop) [h : decidable_pred p] (s : finset A) : decidable (any s p) := quot.rec_on_subsingleton s (λ l, list.decidable_any p (elt_of l)) end any section product variables {A B : Type} definition product (s₁ : finset A) (s₂ : finset B) : finset (A × B) := quot.lift_on₂ s₁ s₂ (λ l₁ l₂, to_finset_of_nodup (product (elt_of l₁) (elt_of l₂)) (nodup_product (has_property l₁) (has_property l₂))) (λ v₁ v₂ w₁ w₂ p₁ p₂, begin apply @quot.sound, apply perm_product p₁ p₂ end) infix [priority finset.prio] * := product theorem empty_product (s : finset B) : @empty A * s = ∅ := quot.induction_on s (λ l, rfl) theorem mem_product {a : A} {b : B} {s₁ : finset A} {s₂ : finset B} : a ∈ s₁ → b ∈ s₂ → (a, b) ∈ s₁ * s₂ := quot.induction_on₂ s₁ s₂ (λ l₁ l₂ i₁ i₂, list.mem_product i₁ i₂) theorem mem_of_mem_product_left {a : A} {b : B} {s₁ : finset A} {s₂ : finset B} : (a, b) ∈ s₁ * s₂ → a ∈ s₁ := quot.induction_on₂ s₁ s₂ (λ l₁ l₂ i, list.mem_of_mem_product_left i) theorem mem_of_mem_product_right {a : A} {b : B} {s₁ : finset A} {s₂ : finset B} : (a, b) ∈ s₁ * s₂ → b ∈ s₂ := quot.induction_on₂ s₁ s₂ (λ l₁ l₂ i, list.mem_of_mem_product_right i) theorem product_empty (s : finset A) : s * @empty B = ∅ := ext (λ p, match p with | (a, b) := iff.intro (λ i, absurd (mem_of_mem_product_right i) !not_mem_empty) (λ i, absurd i !not_mem_empty) end) end product /- powerset -/ section powerset variables {A : Type} [deceqA : decidable_eq A] include deceqA section list_powerset open list definition list_powerset : list A → finset (finset A) | [] := '{∅} | (a :: l) := list_powerset l ∪ image (insert a) (list_powerset l) end list_powerset private theorem image_insert_comm (a b : A) (s : finset (finset A)) : image (insert a) (image (insert b) s) = image (insert b) (image (insert a) s) := have aux' : ∀ a b : A, ∀ x : finset A, x ∈ image (insert a) (image (insert b) s) → x ∈ image (insert b) (image (insert a) s), from begin intros [a, b, x, H], cases (exists_of_mem_image H) with [y, Hy], cases Hy with [Hy1, Hy2], cases (exists_of_mem_image Hy1) with [z, Hz], cases Hz with [Hz1, Hz2], substvars, rewrite insert.comm, repeat (apply mem_image_of_mem), assumption end, ext (take x, iff.intro (aux' a b x) (aux' b a x)) theorem list_powerset_eq_list_powerset_of_perm {l₁ l₂ : list A} (p : l₁ ~ l₂) : list_powerset l₁ = list_powerset l₂ := perm.induction_on p rfl (λ x l₁ l₂ p ih, by rewrite [↑list_powerset, ih]) (λ x y l, by rewrite [↑list_powerset, ↑list_powerset, *image_union, image_insert_comm, *union_assoc, union_left_comm (finset.image (finset.insert x) _)]) (λ l₁ l₂ l₃ p₁ p₂ r₁ r₂, eq.trans r₁ r₂) definition powerset (s : finset A) : finset (finset A) := quot.lift_on s (λ l, list_powerset (elt_of l)) (λ l₁ l₂ p, list_powerset_eq_list_powerset_of_perm p) prefix [priority finset.prio] `𝒫`:100 := powerset theorem powerset_empty : 𝒫 (∅ : finset A) = '{∅} := rfl theorem powerset_insert {a : A} {s : finset A} : a ∉ s → 𝒫 (insert a s) = 𝒫 s ∪ image (insert a) (𝒫 s) := quot.induction_on s (λ l, assume H : a ∉ quot.mk l, calc 𝒫 (insert a (quot.mk l)) = list_powerset (list.insert a (elt_of l)) : rfl ... = list_powerset (#list a :: elt_of l) : by rewrite [list.insert_eq_of_not_mem H] ... = 𝒫 (quot.mk l) ∪ image (insert a) (𝒫 (quot.mk l)) : rfl) theorem mem_powerset_iff_subset (s : finset A) : ∀ x, x ∈ 𝒫 s ↔ x ⊆ s := begin induction s with a s nains ih, intro x, rewrite powerset_empty, show x ∈ '{∅} ↔ x ⊆ ∅, by rewrite [mem_singleton_iff, subset_empty_iff], intro x, rewrite [powerset_insert nains, mem_union_iff, ih, mem_image_iff], exact (iff.intro (assume H, or.elim H (suppose x ⊆ s, subset.trans this !subset_insert) (suppose ∃ y, y ∈ 𝒫 s ∧ insert a y = x, obtain y [yps iay], from this, show x ⊆ insert a s, begin rewrite [-iay], apply insert_subset_insert, rewrite -ih, apply yps end)) (assume H : x ⊆ insert a s, assert H' : erase a x ⊆ s, from erase_subset_of_subset_insert H, decidable.by_cases (suppose a ∈ x, or.inr (exists.intro (erase a x) (and.intro (show erase a x ∈ 𝒫 s, by rewrite ih; apply H') (show insert a (erase a x) = x, from insert_erase this)))) (suppose a ∉ x, or.inl (show x ⊆ s, by rewrite [(erase_eq_of_not_mem this) at H']; apply H')))) end theorem subset_of_mem_powerset {s t : finset A} (H : s ∈ 𝒫 t) : s ⊆ t := iff.mp (mem_powerset_iff_subset t s) H theorem mem_powerset_of_subset {s t : finset A} (H : s ⊆ t) : s ∈ 𝒫 t := iff.mpr (mem_powerset_iff_subset t s) H theorem empty_mem_powerset (s : finset A) : ∅ ∈ 𝒫 s := mem_powerset_of_subset (empty_subset s) end powerset end finset