-- Copyright (c) 2014 Jakob von Raumer. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Jakob von Raumer -- Ported from Coq HoTT import .precategory.basic .precategory.morphism .group open eq function prod sigma truncation morphism nat path_algebra unit structure foo (A : Type) := (bsp : A) structure groupoid [class] (ob : Type) extends precategory ob := (all_iso : Π ⦃a b : ob⦄ (f : hom a b), @is_iso ob (precategory.mk hom _ _ _ assoc id_left id_right) a b f) namespace groupoid persistent attribute all_iso [instance] --set_option pp.universes true --set_option pp.implicit true universe variable l open precategory definition path_groupoid (A : Type.{l}) (H : is_trunc (nat.zero .+1) A) : groupoid.{l l} A := groupoid.mk (λ (a b : A), a = b) (λ (a b : A), have ish : is_hset (a = b), from succ_is_trunc nat.zero a b, ish) (λ (a b c : A) (p : b = c) (q : a = b), q ⬝ p) (λ (a : A), refl a) (λ (a b c d : A) (p : c = d) (q : b = c) (r : a = b), concat_pp_p r q p) (λ (a b : A) (p : a = b), concat_p1 p) (λ (a b : A) (p : a = b), concat_1p p) (λ (a b : A) (p : a = b), @is_iso.mk A _ a b p (p⁻¹) !concat_pV !concat_Vp) -- A groupoid with a contractible carrier is a group definition group_of_contr {ob : Type} (H : is_contr ob) (G : groupoid ob) : group (hom (center ob) (center ob)) := begin fapply group.mk, intros (f, g), apply (comp f g), apply homH, intros (f, g, h), apply ((assoc f g h)⁻¹), apply (ID (center ob)), intro f, apply id_left, intro f, apply id_right, intro f, exact (morphism.inverse f), intro f, exact (morphism.inverse_compose f), end definition group_of_unit (G : groupoid unit) : group (hom ⋆ ⋆) := begin fapply group.mk, intros (f, g), apply (comp f g), apply homH, intros (f, g, h), apply ((assoc f g h)⁻¹), apply (ID ⋆), intro f, apply id_left, intro f, apply id_right, intro f, exact (morphism.inverse f), intro f, exact (morphism.inverse_compose f), end -- Conversely we can turn each group into a groupoid on the unit type definition of_group (A : Type.{l}) [G : group A] : groupoid.{l l} unit := begin fapply groupoid.mk, intros, exact A, intros, apply (@group.carrier_hset A G), intros (a, b, c, g, h), exact (@group.mul A G g h), intro a, exact (@group.one A G), intros, exact ((@group.mul_assoc A G h g f)⁻¹), intros, exact (@group.mul_left_id A G f), intros, exact (@group.mul_right_id A G f), intros, apply is_iso.mk, apply mul_left_inv, apply mul_right_inv, end -- TODO: This is probably wrong open equiv is_equiv definition group_equiv {A : Type.{l}} [fx : funext] : group A ≃ Σ (G : groupoid.{l l} unit), @hom unit G ⋆ ⋆ = A := sorry end groupoid