-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura, Jeremy Avigad import logic.classes.inhabited logic.core.eq logic.classes.decidable open decidable inductive subtype {A : Type} (P : A → Prop) : Type := tag : Πx : A, P x → subtype P notation `{` binders `,` r:(scoped P, subtype P) `}` := r namespace subtype section parameter {A : Type} parameter {P : A → Prop} -- TODO: make this a coercion? definition elt_of (a : {x, P x}) : A := rec (λ x y, x) a theorem has_property (a : {x, P x}) : P (elt_of a) := rec (λ x y, y) a theorem elt_of_tag (a : A) (H : P a) : elt_of (tag a H) = a := rfl theorem destruct [protected] {Q : {x, P x} → Prop} (a : {x, P x}) (H : ∀(x : A) (H1 : P x), Q (tag x H1)) : Q a := rec H a theorem tag_irrelevant {a : A} (H1 H2 : P a) : tag a H1 = tag a H2 := rfl theorem tag_elt_of (a : subtype P) : ∀(H : P (elt_of a)), tag (elt_of a) H = a := destruct a (take (x : A) (H1 : P x) (H2 : P x), rfl) theorem tag_eq {a1 a2 : A} {H1 : P a1} {H2 : P a2} (H3 : a1 = a2) : tag a1 H1 = tag a2 H2 := eq.subst H3 (take H2, tag_irrelevant H1 H2) H2 theorem equal [protected] {a1 a2 : {x, P x}} : ∀(H : elt_of a1 = elt_of a2), a1 = a2 := destruct a1 (take x1 H1, destruct a2 (take x2 H2 H, tag_eq H)) theorem is_inhabited [protected] [instance] {a : A} (H : P a) : inhabited {x, P x} := inhabited.mk (tag a H) theorem has_decidable_eq [protected] [instance] (H : decidable_eq A) : decidable_eq {x, P x} := take a1 a2 : {x, P x}, have H1 : (a1 = a2) ↔ (elt_of a1 = elt_of a2), from iff.intro (assume H, eq.subst H rfl) (assume H, equal H), decidable_iff_equiv _ (iff.symm H1) end end subtype