-- Copyright (c) 2014 Floris van Doorn. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Floris van Doorn, Jakob von Raumer import .functor types.pi open eq precategory functor truncation equiv sigma.ops sigma is_equiv function pi inductive natural_transformation {C D : Precategory} (F G : C ⇒ D) : Type := mk : Π (η : Π (a : C), hom (F a) (G a)) (nat : Π {a b : C} (f : hom a b), G f ∘ η a = η b ∘ F f), natural_transformation F G infixl `⟹`:25 := natural_transformation -- \==> namespace natural_transformation variables {C D : Precategory} {F G H I : functor C D} definition natural_map [coercion] (η : F ⟹ G) : Π(a : C), F a ⟶ G a := rec (λ x y, x) η theorem naturality (η : F ⟹ G) : Π⦃a b : C⦄ (f : a ⟶ b), G f ∘ η a = η b ∘ F f := rec (λ x y, y) η protected definition sigma_char : (Σ (η : Π (a : C), hom (F a) (G a)), Π (a b : C) (f : hom a b), G f ∘ η a = η b ∘ F f) ≃ (F ⟹ G) := /-equiv.mk (λ S, natural_transformation.mk S.1 S.2) (adjointify (λ S, natural_transformation.mk S.1 S.2) (λ H, natural_transformation.rec_on H (λ η nat, dpair η nat)) (λ H, natural_transformation.rec_on H (λ η nat, idpath (natural_transformation.mk η nat))) (λ S, sigma.rec_on S (λ η nat, idpath (dpair η nat))))-/ /- THE FOLLLOWING CAUSES LEAN TO SEGFAULT? begin fapply equiv.mk, intro S, apply natural_transformation.mk, exact (S.2), fapply adjointify, intro H, apply (natural_transformation.rec_on H), intros (η, natu), exact (dpair η @natu), intro H, apply (natural_transformation.rec_on _ _ _), intros, end check sigma_char-/ sorry protected definition compose (η : G ⟹ H) (θ : F ⟹ G) : F ⟹ H := natural_transformation.mk (λ a, η a ∘ θ a) (λ a b f, calc H f ∘ (η a ∘ θ a) = (H f ∘ η a) ∘ θ a : assoc ... = (η b ∘ G f) ∘ θ a : naturality η f ... = η b ∘ (G f ∘ θ a) : assoc ... = η b ∘ (θ b ∘ F f) : naturality θ f ... = (η b ∘ θ b) ∘ F f : assoc) --congr_arg (λx, η b ∘ x) (naturality θ f) -- this needed to be explicit for some reason (on Oct 24) infixr `∘n`:60 := compose protected definition assoc (η₃ : H ⟹ I) (η₂ : G ⟹ H) (η₁ : F ⟹ G) [fext fext2 fext3 : funext] : η₃ ∘n (η₂ ∘n η₁) = (η₃ ∘n η₂) ∘n η₁ := -- Proof broken, universe issues? /-have aux [visible] : is_hprop (Π (a b : C) (f : hom a b), I f ∘ (η₃ ∘n η₂) a ∘ η₁ a = ((η₃ ∘n η₂) b ∘ η₁ b) ∘ F f), begin repeat (apply trunc_pi; intros), apply (succ_is_trunc -1 (I a_2 ∘ (η₃ ∘n η₂) a ∘ η₁ a)), end, dcongr_arg2 mk (funext.path_forall _ _ (λ x, !assoc)) !is_hprop.elim-/ sorry protected definition id {C D : Precategory} {F : functor C D} : natural_transformation F F := mk (λa, id) (λa b f, !id_right ⬝ (!id_left⁻¹)) protected definition ID {C D : Precategory} (F : functor C D) : natural_transformation F F := id protected definition id_left (η : F ⟹ G) [fext : funext.{l_1 l_4}] : id ∘n η = η := --Proof broken like all trunc_pi proofs /-begin apply (rec_on η), intros (f, H), fapply (path.dcongr_arg2 mk), apply (funext.path_forall _ f (λa, !id_left)), assert (H1 : is_hprop (Π {a b : C} (g : hom a b), G g ∘ f a = f b ∘ F g)), --repeat (apply trunc_pi; intros), apply (@trunc_pi _ _ _ (-2 .+1) _), /- apply (succ_is_trunc -1 (G a_2 ∘ f a) (f a_1 ∘ F a_2)), apply (!is_hprop.elim),-/ end-/ sorry protected definition id_right (η : F ⟹ G) [fext : funext.{l_1 l_4}] : η ∘n id = η := --Proof broken like all trunc_pi proofs /-begin apply (rec_on η), intros (f, H), fapply (path.dcongr_arg2 mk), apply (funext.path_forall _ f (λa, !id_right)), assert (H1 : is_hprop (Π {a b : C} (g : hom a b), G g ∘ f a = f b ∘ F g)), repeat (apply trunc_pi; intros), apply (succ_is_trunc -1 (G a_2 ∘ f a) (f a_1 ∘ F a_2)), apply (!is_hprop.elim), end-/ sorry protected definition to_hset [fx : funext] : is_hset (F ⟹ G) := --Proof broken like all trunc_pi proofs /-begin apply trunc_equiv, apply (equiv.to_is_equiv sigma_char), apply trunc_sigma, apply trunc_pi, intro a, exact (@homH (objects D) _ (F a) (G a)), intro η, apply trunc_pi, intro a, apply trunc_pi, intro b, apply trunc_pi, intro f, apply succ_is_trunc, apply trunc_succ, exact (@homH (objects D) _ (F a) (G b)), end-/ sorry end natural_transformation