/- Copyright (c) 2016 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer, Ulrik Buchholtz The Wedge Sum of Two Pointed Types -/ import hit.pointed_pushout .connectedness open eq pushout pointed Pointed definition Wedge (A B : Type*) : Type* := Pushout (pconst Unit A) (pconst Unit B) namespace wedge -- TODO maybe find a cleaner proof protected definition unit (A : Type*) : A ≃* Wedge Unit A := begin fconstructor, { fapply pmap.mk, intro a, apply pinr a, apply respect_pt }, { fapply is_equiv.adjointify, intro x, fapply pushout.elim_on x, exact λ x, Point A, exact id, intro u, reflexivity, intro x, fapply pushout.rec_on x, intro u, cases u, esimp, apply (glue unit.star)⁻¹, intro a, reflexivity, intro u, cases u, esimp, apply eq_pathover, refine _ ⬝hp !ap_id⁻¹, fapply eq_hconcat, apply ap_compose inr, krewrite elim_glue, fapply eq_hconcat, apply ap_idp, apply square_of_eq, apply con.left_inv, intro a, reflexivity }, end end wedge open trunc is_trunc function homotopy namespace wedge_extension section -- The wedge connectivity lemma (Lemma 8.6.2) parameters {A B : Type*} (n m : trunc_index) [cA : is_conn n .+2 A] [cB : is_conn m .+2 B] (P : A → B → (m .+1 +2+ n .+1)-Type) (f : Πa : A, P a (Point B)) (g : Πb : B, P (Point A) b) (p : f (Point A) = g (Point B)) include cA cB private definition Q (a : A) : (n .+1)-Type := trunctype.mk (fiber (λs : (Πb : B, P a b), s (Point B)) (f a)) (is_conn.elim_general (P a) (f a)) private definition Q_sec : Πa : A, Q a := is_conn.elim Q (fiber.mk g p⁻¹) protected definition ext : Π(a : A)(b : B), P a b := λa, fiber.point (Q_sec a) protected definition β_left (a : A) : ext a (Point B) = f a := fiber.point_eq (Q_sec a) private definition coh_aux : Σq : ext (Point A) = g, β_left (Point A) = ap (λs : (Πb : B, P (Point A) b), s (Point B)) q ⬝ p⁻¹ := equiv.to_fun (fiber.fiber_eq_equiv (Q_sec (Point A)) (fiber.mk g p⁻¹)) (is_conn.elim_β Q (fiber.mk g p⁻¹)) protected definition β_right (b : B) : ext (Point A) b = g b := apd10 (sigma.pr1 coh_aux) b private definition lem : β_left (Point A) = β_right (Point B) ⬝ p⁻¹ := begin unfold β_right, unfold β_left, krewrite (apd10_eq_ap_eval (sigma.pr1 coh_aux) (Point B)), exact sigma.pr2 coh_aux, end protected definition coh : (β_left (Point A))⁻¹ ⬝ β_right (Point B) = p := by rewrite [lem,con_inv,inv_inv,con.assoc,con.left_inv] end end wedge_extension