/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Floris van Doorn Ported from Coq HoTT Theorems about fibers -/ import .sigma .eq .pi .pointed structure fiber {A B : Type} (f : A → B) (b : B) := (point : A) (point_eq : f point = b) open equiv sigma sigma.ops eq pi namespace fiber variables {A B : Type} {f : A → B} {b : B} protected definition sigma_char [constructor] (f : A → B) (b : B) : fiber f b ≃ (Σ(a : A), f a = b) := begin fapply equiv.MK, {intro x, exact ⟨point x, point_eq x⟩}, {intro x, exact (fiber.mk x.1 x.2)}, {intro x, cases x, apply idp}, {intro x, cases x, apply idp}, end definition fiber_eq_equiv (x y : fiber f b) : (x = y) ≃ (Σ(p : point x = point y), point_eq x = ap f p ⬝ point_eq y) := begin apply equiv.trans, apply eq_equiv_fn_eq_of_equiv, apply fiber.sigma_char, apply equiv.trans, apply sigma_eq_equiv, apply sigma_equiv_sigma_id, intro p, apply pathover_eq_equiv_Fl, end definition fiber_eq {x y : fiber f b} (p : point x = point y) (q : point_eq x = ap f p ⬝ point_eq y) : x = y := to_inv !fiber_eq_equiv ⟨p, q⟩ open is_trunc definition fiber_pr1 (B : A → Type) (a : A) : fiber (pr1 : (Σa, B a) → A) a ≃ B a := calc fiber pr1 a ≃ Σu, u.1 = a : fiber.sigma_char ... ≃ Σa' (b : B a'), a' = a : sigma_assoc_equiv ... ≃ Σa' (p : a' = a), B a' : sigma_equiv_sigma_id (λa', !comm_equiv_nondep) ... ≃ Σu, B u.1 : sigma_assoc_equiv ... ≃ B a : !sigma_equiv_of_is_contr_left definition sigma_fiber_equiv (f : A → B) : (Σb, fiber f b) ≃ A := calc (Σb, fiber f b) ≃ Σb a, f a = b : sigma_equiv_sigma_id (λb, !fiber.sigma_char) ... ≃ Σa b, f a = b : sigma_comm_equiv ... ≃ A : sigma_equiv_of_is_contr_right definition is_pointed_fiber [instance] [constructor] (f : A → B) (a : A) : pointed (fiber f (f a)) := pointed.mk (fiber.mk a idp) definition pointed_fiber [constructor] (f : A → B) (a : A) : Type* := Pointed.mk (fiber.mk a (idpath (f a))) definition is_trunc_fun [reducible] (n : trunc_index) (f : A → B) := Π(b : B), is_trunc n (fiber f b) definition is_contr_fun [reducible] (f : A → B) := is_trunc_fun -2 f -- pre and post composition with equivalences open function protected definition equiv_postcompose {B' : Type} (g : B → B') [H : is_equiv g] : fiber (g ∘ f) (g b) ≃ fiber f b := calc fiber (g ∘ f) (g b) ≃ Σa : A, g (f a) = g b : fiber.sigma_char ... ≃ Σa : A, f a = b : begin apply sigma_equiv_sigma_id, intro a, apply equiv.symm, apply eq_equiv_fn_eq end ... ≃ fiber f b : fiber.sigma_char protected definition equiv_precompose {A' : Type} (g : A' → A) [H : is_equiv g] : fiber (f ∘ g) b ≃ fiber f b := calc fiber (f ∘ g) b ≃ Σa' : A', f (g a') = b : fiber.sigma_char ... ≃ Σa : A, f a = b : begin apply sigma_equiv_sigma (equiv.mk g H), intro a', apply erfl end ... ≃ fiber f b : fiber.sigma_char end fiber open unit is_trunc namespace fiber definition fiber_star_equiv (A : Type) : fiber (λx : A, star) star ≃ A := begin fapply equiv.MK, { intro f, cases f with a H, exact a }, { intro a, apply fiber.mk a, reflexivity }, { intro a, reflexivity }, { intro f, cases f with a H, change fiber.mk a (refl star) = fiber.mk a H, rewrite [is_hset.elim H (refl star)] } end definition fiber_const_equiv (A : Type) (a₀ : A) (a : A) : fiber (λz : unit, a₀) a ≃ a₀ = a := calc fiber (λz : unit, a₀) a ≃ Σz : unit, a₀ = a : fiber.sigma_char ... ≃ a₀ = a : sigma_unit_left end fiber open function is_equiv namespace fiber /- Theorem 4.7.6 -/ variables {A : Type} {P Q : A → Type} variable (f : Πa, P a → Q a) definition fiber_total_equiv {a : A} (q : Q a) : fiber (total f) ⟨a , q⟩ ≃ fiber (f a) q := calc fiber (total f) ⟨a , q⟩ ≃ Σ(w : Σx, P x), ⟨w.1 , f w.1 w.2 ⟩ = ⟨a , q⟩ : fiber.sigma_char ... ≃ Σ(x : A), Σ(p : P x), ⟨x , f x p⟩ = ⟨a , q⟩ : sigma_assoc_equiv ... ≃ Σ(x : A), Σ(p : P x), Σ(H : x = a), f x p =[H] q : begin apply sigma_equiv_sigma_id, intro x, apply sigma_equiv_sigma_id, intro p, apply sigma_eq_equiv end ... ≃ Σ(x : A), Σ(H : x = a), Σ(p : P x), f x p =[H] q : begin apply sigma_equiv_sigma_id, intro x, apply sigma_comm_equiv end ... ≃ Σ(w : Σx, x = a), Σ(p : P w.1), f w.1 p =[w.2] q : sigma_assoc_equiv ... ≃ Σ(p : P (center (Σx, x=a)).1), f (center (Σx, x=a)).1 p =[(center (Σx, x=a)).2] q : sigma_equiv_of_is_contr_left ... ≃ Σ(p : P a), f a p =[idpath a] q : equiv_of_eq idp ... ≃ Σ(p : P a), f a p = q : begin apply sigma_equiv_sigma_id, intro p, apply pathover_idp end ... ≃ fiber (f a) q : fiber.sigma_char end fiber