/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura Definitions and properties of div and mod. Much of the development follows Isabelle's library. -/ import data.nat.sub open eq.ops well_founded decidable prod namespace nat /- div -/ -- auxiliary lemma used to justify div private definition div_rec_lemma {x y : nat} : 0 < y ∧ y ≤ x → x - y < x := and.rec (λ ypos ylex, sub_lt (lt_of_lt_of_le ypos ylex) ypos) private definition div.F (x : nat) (f : Π x₁, x₁ < x → nat → nat) (y : nat) : nat := if H : 0 < y ∧ y ≤ x then f (x - y) (div_rec_lemma H) y + 1 else zero protected definition div := fix div.F definition nat_has_divide [instance] [priority nat.prio] : has_div nat := has_div.mk nat.div theorem div_def (x y : nat) : div x y = if 0 < y ∧ y ≤ x then div (x - y) y + 1 else 0 := congr_fun (fix_eq div.F x) y protected theorem div_zero [simp] (a : ℕ) : a / 0 = 0 := div_def a 0 ⬝ if_neg (!not_and_of_not_left (lt.irrefl 0)) theorem div_eq_zero_of_lt {a b : ℕ} (h : a < b) : a / b = 0 := div_def a b ⬝ if_neg (!not_and_of_not_right (not_le_of_gt h)) protected theorem zero_div [simp] (b : ℕ) : 0 / b = 0 := div_def 0 b ⬝ if_neg (and.rec not_le_of_gt) theorem div_eq_succ_sub_div {a b : ℕ} (h₁ : b > 0) (h₂ : a ≥ b) : a / b = succ ((a - b) / b) := div_def a b ⬝ if_pos (and.intro h₁ h₂) theorem add_div_self (x : ℕ) {z : ℕ} (H : z > 0) : (x + z) / z = succ (x / z) := calc (x + z) / z = if 0 < z ∧ z ≤ x + z then (x + z - z) / z + 1 else 0 : !div_def ... = (x + z - z) / z + 1 : if_pos (and.intro H (le_add_left z x)) ... = succ (x / z) : {!nat.add_sub_cancel} theorem add_div_self_left {x : ℕ} (z : ℕ) (H : x > 0) : (x + z) / x = succ (z / x) := !add.comm ▸ !add_div_self H local attribute succ_mul [simp] theorem add_mul_div_self {x y z : ℕ} (H : z > 0) : (x + y * z) / z = x / z + y := nat.induction_on y (by simp) (take y, assume IH : (x + y * z) / z = x / z + y, calc (x + succ y * z) / z = (x + y * z + z) / z : by inst_simp ... = succ ((x + y * z) / z) : !add_div_self H ... = succ (x / z + y) : IH) theorem add_mul_div_self_left (x z : ℕ) {y : ℕ} (H : y > 0) : (x + y * z) / y = x / y + z := !mul.comm ▸ add_mul_div_self H protected theorem mul_div_cancel (m : ℕ) {n : ℕ} (H : n > 0) : m * n / n = m := calc m * n / n = (0 + m * n) / n : by simp ... = 0 / n + m : add_mul_div_self H ... = m : by simp protected theorem mul_div_cancel_left {m : ℕ} (n : ℕ) (H : m > 0) : m * n / m = n := !mul.comm ▸ !nat.mul_div_cancel H /- mod -/ private definition mod.F (x : nat) (f : Π x₁, x₁ < x → nat → nat) (y : nat) : nat := if H : 0 < y ∧ y ≤ x then f (x - y) (div_rec_lemma H) y else x protected definition mod := fix mod.F definition nat_has_mod [instance] [priority nat.prio] : has_mod nat := has_mod.mk nat.mod notation [priority nat.prio] a ≡ b `[mod `:0 c:0 `]` := a % c = b % c theorem mod_def (x y : nat) : mod x y = if 0 < y ∧ y ≤ x then mod (x - y) y else x := congr_fun (fix_eq mod.F x) y theorem mod_zero [simp] (a : ℕ) : a % 0 = a := mod_def a 0 ⬝ if_neg (!not_and_of_not_left (lt.irrefl 0)) theorem mod_eq_of_lt {a b : ℕ} (h : a < b) : a % b = a := mod_def a b ⬝ if_neg (!not_and_of_not_right (not_le_of_gt h)) theorem zero_mod [simp] (b : ℕ) : 0 % b = 0 := mod_def 0 b ⬝ if_neg (λ h, and.rec_on h (λ l r, absurd (lt_of_lt_of_le l r) (lt.irrefl 0))) theorem mod_eq_sub_mod {a b : ℕ} (h₁ : b > 0) (h₂ : a ≥ b) : a % b = (a - b) % b := mod_def a b ⬝ if_pos (and.intro h₁ h₂) theorem add_mod_self [simp] (x z : ℕ) : (x + z) % z = x % z := by_cases_zero_pos z (by rewrite add_zero) (take z, assume H : z > 0, calc (x + z) % z = if 0 < z ∧ z ≤ x + z then (x + z - z) % z else _ : mod_def ... = (x + z - z) % z : if_pos (and.intro H (le_add_left z x)) ... = x % z : nat.add_sub_cancel) theorem add_mod_self_left [simp] (x z : ℕ) : (x + z) % x = z % x := !add.comm ▸ !add_mod_self local attribute succ_mul [simp] theorem add_mul_mod_self [simp] (x y z : ℕ) : (x + y * z) % z = x % z := nat.induction_on y (by simp) (by inst_simp) theorem add_mul_mod_self_left [simp] (x y z : ℕ) : (x + y * z) % y = x % y := by inst_simp theorem mul_mod_left [simp] (m n : ℕ) : (m * n) % n = 0 := calc (m * n) % n = (0 + m * n) % n : by simp ... = 0 : by inst_simp theorem mul_mod_right [simp] (m n : ℕ) : (m * n) % m = 0 := by inst_simp theorem mod_lt (x : ℕ) {y : ℕ} (H : y > 0) : x % y < y := nat.case_strong_induction_on x (show 0 % y < y, from !zero_mod⁻¹ ▸ H) (take x, assume IH : ∀x', x' ≤ x → x' % y < y, show succ x % y < y, from by_cases -- (succ x < y) (assume H1 : succ x < y, have succ x % y = succ x, from mod_eq_of_lt H1, show succ x % y < y, from this⁻¹ ▸ H1) (assume H1 : ¬ succ x < y, have y ≤ succ x, from le_of_not_gt H1, have h : succ x % y = (succ x - y) % y, from mod_eq_sub_mod H this, have succ x - y < succ x, from sub_lt !succ_pos H, have succ x - y ≤ x, from le_of_lt_succ this, show succ x % y < y, from h⁻¹ ▸ IH _ this)) theorem mod_one (n : ℕ) : n % 1 = 0 := have H1 : n % 1 < 1, from !mod_lt !succ_pos, eq_zero_of_le_zero (le_of_lt_succ H1) /- properties of div and mod -/ -- the quotient - remainder theorem theorem eq_div_mul_add_mod (x y : ℕ) : x = x / y * y + x % y := begin eapply by_cases_zero_pos y, show x = x / 0 * 0 + x % 0, from (calc x / 0 * 0 + x % 0 = 0 + x % 0 : mul_zero ... = x % 0 : zero_add ... = x : mod_zero)⁻¹, intro y H, show x = x / y * y + x % y, begin eapply nat.case_strong_induction_on x, show 0 = (0 / y) * y + 0 % y, by rewrite [zero_mod, add_zero, nat.zero_div, zero_mul], intro x IH, show succ x = succ x / y * y + succ x % y, from if H1 : succ x < y then assert H2 : succ x / y = 0, from div_eq_zero_of_lt H1, assert H3 : succ x % y = succ x, from mod_eq_of_lt H1, begin rewrite [H2, H3, zero_mul, zero_add] end else have H2 : y ≤ succ x, from le_of_not_gt H1, assert H3 : succ x / y = succ ((succ x - y) / y), from div_eq_succ_sub_div H H2, assert H4 : succ x % y = (succ x - y) % y, from mod_eq_sub_mod H H2, have H5 : succ x - y < succ x, from sub_lt !succ_pos H, assert H6 : succ x - y ≤ x, from le_of_lt_succ H5, (calc succ x / y * y + succ x % y = succ ((succ x - y) / y) * y + succ x % y : by rewrite H3 ... = ((succ x - y) / y) * y + y + succ x % y : by rewrite succ_mul ... = ((succ x - y) / y) * y + y + (succ x - y) % y : by rewrite H4 ... = ((succ x - y) / y) * y + (succ x - y) % y + y : add.right_comm ... = succ x - y + y : by rewrite -(IH _ H6) ... = succ x : nat.sub_add_cancel H2)⁻¹ end end theorem mod_eq_sub_div_mul (x y : ℕ) : x % y = x - x / y * y := nat.eq_sub_of_add_eq (!add.comm ▸ !eq_div_mul_add_mod)⁻¹ theorem mod_add_mod (m n k : ℕ) : (m % n + k) % n = (m + k) % n := by rewrite [eq_div_mul_add_mod m n at {2}, add.assoc, add.comm (m / n * n), add_mul_mod_self] theorem add_mod_mod (m n k : ℕ) : (m + n % k) % k = (m + n) % k := by rewrite [add.comm, mod_add_mod, add.comm] theorem add_mod_eq_add_mod_right {m n k : ℕ} (i : ℕ) (H : m % n = k % n) : (m + i) % n = (k + i) % n := by rewrite [-mod_add_mod, -mod_add_mod k, H] theorem add_mod_eq_add_mod_left {m n k : ℕ} (i : ℕ) (H : m % n = k % n) : (i + m) % n = (i + k) % n := by rewrite [add.comm, add_mod_eq_add_mod_right _ H, add.comm] theorem mod_eq_mod_of_add_mod_eq_add_mod_right {m n k i : ℕ} : (m + i) % n = (k + i) % n → m % n = k % n := by_cases_zero_pos n (by rewrite [*mod_zero]; apply eq_of_add_eq_add_right) (take n, assume npos : n > 0, assume H1 : (m + i) % n = (k + i) % n, have H2 : (m + i % n) % n = (k + i % n) % n, by rewrite [*add_mod_mod, H1], assert H3 : (m + i % n + (n - i % n)) % n = (k + i % n + (n - i % n)) % n, from add_mod_eq_add_mod_right _ H2, begin revert H3, rewrite [*add.assoc, add_sub_of_le (le_of_lt (!mod_lt npos)), *add_mod_self], intros, assumption end) theorem mod_eq_mod_of_add_mod_eq_add_mod_left {m n k i : ℕ} : (i + m) % n = (i + k) % n → m % n = k % n := by rewrite [add.comm i m, add.comm i k]; apply mod_eq_mod_of_add_mod_eq_add_mod_right theorem mod_le {x y : ℕ} : x % y ≤ x := !eq_div_mul_add_mod⁻¹ ▸ !le_add_left theorem eq_remainder {q1 r1 q2 r2 y : ℕ} (H1 : r1 < y) (H2 : r2 < y) (H3 : q1 * y + r1 = q2 * y + r2) : r1 = r2 := calc r1 = r1 % y : mod_eq_of_lt H1 ... = (r1 + q1 * y) % y : !add_mul_mod_self⁻¹ ... = (q1 * y + r1) % y : add.comm ... = (r2 + q2 * y) % y : by rewrite [H3, add.comm] ... = r2 % y : !add_mul_mod_self ... = r2 : mod_eq_of_lt H2 theorem eq_quotient {q1 r1 q2 r2 y : ℕ} (H1 : r1 < y) (H2 : r2 < y) (H3 : q1 * y + r1 = q2 * y + r2) : q1 = q2 := have H4 : q1 * y + r2 = q2 * y + r2, from (eq_remainder H1 H2 H3) ▸ H3, have H5 : q1 * y = q2 * y, from add.right_cancel H4, have H6 : y > 0, from lt_of_le_of_lt !zero_le H1, show q1 = q2, from eq_of_mul_eq_mul_right H6 H5 protected theorem mul_div_mul_left {z : ℕ} (x y : ℕ) (zpos : z > 0) : (z * x) / (z * y) = x / y := if H : y = 0 then by rewrite [H, mul_zero, *nat.div_zero] else have ypos : y > 0, from pos_of_ne_zero H, have zypos : z * y > 0, from mul_pos zpos ypos, have H1 : (z * x) % (z * y) < z * y, from !mod_lt zypos, have H2 : z * (x % y) < z * y, from mul_lt_mul_of_pos_left (!mod_lt ypos) zpos, eq_quotient H1 H2 (calc ((z * x) / (z * y)) * (z * y) + (z * x) % (z * y) = z * x : eq_div_mul_add_mod ... = z * (x / y * y + x % y) : eq_div_mul_add_mod ... = z * (x / y * y) + z * (x % y) : left_distrib ... = (x / y) * (z * y) + z * (x % y) : mul.left_comm) protected theorem mul_div_mul_right {x z y : ℕ} (zpos : z > 0) : (x * z) / (y * z) = x / y := !mul.comm ▸ !mul.comm ▸ !nat.mul_div_mul_left zpos theorem mul_mod_mul_left (z x y : ℕ) : (z * x) % (z * y) = z * (x % y) := or.elim (eq_zero_or_pos z) (assume H : z = 0, H⁻¹ ▸ calc (0 * x) % (z * y) = 0 % (z * y) : zero_mul ... = 0 : zero_mod ... = 0 * (x % y) : zero_mul) (assume zpos : z > 0, or.elim (eq_zero_or_pos y) (assume H : y = 0, by rewrite [H, mul_zero, *mod_zero]) (assume ypos : y > 0, have zypos : z * y > 0, from mul_pos zpos ypos, have H1 : (z * x) % (z * y) < z * y, from !mod_lt zypos, have H2 : z * (x % y) < z * y, from mul_lt_mul_of_pos_left (!mod_lt ypos) zpos, eq_remainder H1 H2 (calc ((z * x) / (z * y)) * (z * y) + (z * x) % (z * y) = z * x : eq_div_mul_add_mod ... = z * (x / y * y + x % y) : eq_div_mul_add_mod ... = z * (x / y * y) + z * (x % y) : left_distrib ... = (x / y) * (z * y) + z * (x % y) : mul.left_comm))) theorem mul_mod_mul_right (x z y : ℕ) : (x * z) % (y * z) = (x % y) * z := mul.comm z x ▸ mul.comm z y ▸ !mul.comm ▸ !mul_mod_mul_left theorem mod_self (n : ℕ) : n % n = 0 := nat.cases_on n (by rewrite zero_mod) (take n, by rewrite [-zero_add (succ n) at {1}, add_mod_self]) theorem mul_mod_eq_mod_mul_mod (m n k : nat) : (m * n) % k = ((m % k) * n) % k := calc (m * n) % k = (((m / k) * k + m % k) * n) % k : eq_div_mul_add_mod ... = ((m % k) * n) % k : by rewrite [right_distrib, mul.right_comm, add.comm, add_mul_mod_self] theorem mul_mod_eq_mul_mod_mod (m n k : nat) : (m * n) % k = (m * (n % k)) % k := !mul.comm ▸ !mul.comm ▸ !mul_mod_eq_mod_mul_mod protected theorem div_one (n : ℕ) : n / 1 = n := assert n / 1 * 1 + n % 1 = n, from !eq_div_mul_add_mod⁻¹, begin rewrite [-this at {2}, mul_one, mod_one] end protected theorem div_self {n : ℕ} (H : n > 0) : n / n = 1 := assert (n * 1) / (n * 1) = 1 / 1, from !nat.mul_div_mul_left H, by rewrite [nat.div_one at this, -this, *mul_one] theorem div_mul_cancel_of_mod_eq_zero {m n : ℕ} (H : m % n = 0) : m / n * n = m := by rewrite [eq_div_mul_add_mod m n at {2}, H, add_zero] theorem mul_div_cancel_of_mod_eq_zero {m n : ℕ} (H : m % n = 0) : n * (m / n) = m := !mul.comm ▸ div_mul_cancel_of_mod_eq_zero H /- dvd -/ theorem dvd_of_mod_eq_zero {m n : ℕ} (H : n % m = 0) : m ∣ n := dvd.intro (!mul.comm ▸ div_mul_cancel_of_mod_eq_zero H) theorem mod_eq_zero_of_dvd {m n : ℕ} (H : m ∣ n) : n % m = 0 := dvd.elim H (take z, assume H1 : n = m * z, H1⁻¹ ▸ !mul_mod_right) theorem dvd_iff_mod_eq_zero (m n : ℕ) : m ∣ n ↔ n % m = 0 := iff.intro mod_eq_zero_of_dvd dvd_of_mod_eq_zero definition dvd.decidable_rel [instance] : decidable_rel dvd := take m n, decidable_of_decidable_of_iff _ (iff.symm !dvd_iff_mod_eq_zero) protected theorem div_mul_cancel {m n : ℕ} (H : n ∣ m) : m / n * n = m := div_mul_cancel_of_mod_eq_zero (mod_eq_zero_of_dvd H) protected theorem mul_div_cancel' {m n : ℕ} (H : n ∣ m) : n * (m / n) = m := !mul.comm ▸ nat.div_mul_cancel H theorem dvd_of_dvd_add_left {m n₁ n₂ : ℕ} (H₁ : m ∣ n₁ + n₂) (H₂ : m ∣ n₁) : m ∣ n₂ := obtain (c₁ : nat) (Hc₁ : n₁ + n₂ = m * c₁), from H₁, obtain (c₂ : nat) (Hc₂ : n₁ = m * c₂), from H₂, have aux : m * (c₁ - c₂) = n₂, from calc m * (c₁ - c₂) = m * c₁ - m * c₂ : nat.mul_sub_left_distrib ... = n₁ + n₂ - m * c₂ : Hc₁ ... = n₁ + n₂ - n₁ : Hc₂ ... = n₂ : nat.add_sub_cancel_left, dvd.intro aux theorem dvd_of_dvd_add_right {m n₁ n₂ : ℕ} (H : m ∣ n₁ + n₂) : m ∣ n₂ → m ∣ n₁ := nat.dvd_of_dvd_add_left (!add.comm ▸ H) theorem dvd_sub {m n₁ n₂ : ℕ} (H1 : m ∣ n₁) (H2 : m ∣ n₂) : m ∣ n₁ - n₂ := by_cases (assume H3 : n₁ ≥ n₂, have H4 : n₁ = n₁ - n₂ + n₂, from (nat.sub_add_cancel H3)⁻¹, show m ∣ n₁ - n₂, from nat.dvd_of_dvd_add_right (H4 ▸ H1) H2) (assume H3 : ¬ (n₁ ≥ n₂), have H4 : n₁ - n₂ = 0, from sub_eq_zero_of_le (le_of_lt (lt_of_not_ge H3)), show m ∣ n₁ - n₂, from H4⁻¹ ▸ dvd_zero _) theorem dvd.antisymm {m n : ℕ} : m ∣ n → n ∣ m → m = n := by_cases_zero_pos n (assume H1, assume H2 : 0 ∣ m, eq_zero_of_zero_dvd H2) (take n, assume Hpos : n > 0, assume H1 : m ∣ n, assume H2 : n ∣ m, obtain k (Hk : n = m * k), from exists_eq_mul_right_of_dvd H1, obtain l (Hl : m = n * l), from exists_eq_mul_right_of_dvd H2, have n * (l * k) = n, from !mul.assoc ▸ Hl ▸ Hk⁻¹, have l * k = 1, from eq_one_of_mul_eq_self_right Hpos this, have k = 1, from eq_one_of_mul_eq_one_left this, show m = n, from (mul_one m)⁻¹ ⬝ (this ▸ Hk⁻¹)) protected theorem mul_div_assoc (m : ℕ) {n k : ℕ} (H : k ∣ n) : m * n / k = m * (n / k) := or.elim (eq_zero_or_pos k) (assume H1 : k = 0, calc m * n / k = m * n / 0 : H1 ... = 0 : nat.div_zero ... = m * 0 : mul_zero m ... = m * (n / 0) : nat.div_zero ... = m * (n / k) : H1) (assume H1 : k > 0, have H2 : n = n / k * k, from (nat.div_mul_cancel H)⁻¹, calc m * n / k = m * (n / k * k) / k : H2 ... = m * (n / k) * k / k : mul.assoc ... = m * (n / k) : nat.mul_div_cancel _ H1) theorem dvd_of_mul_dvd_mul_left {m n k : ℕ} (kpos : k > 0) (H : k * m ∣ k * n) : m ∣ n := dvd.elim H (take l, assume H1 : k * n = k * m * l, have H2 : n = m * l, from eq_of_mul_eq_mul_left kpos (H1 ⬝ !mul.assoc), dvd.intro H2⁻¹) theorem dvd_of_mul_dvd_mul_right {m n k : ℕ} (kpos : k > 0) (H : m * k ∣ n * k) : m ∣ n := nat.dvd_of_mul_dvd_mul_left kpos (!mul.comm ▸ !mul.comm ▸ H) lemma dvd_of_eq_mul (i j n : nat) : n = j*i → j ∣ n := begin intros, subst n, apply dvd_mul_right end theorem div_dvd_div {k m n : ℕ} (H1 : k ∣ m) (H2 : m ∣ n) : m / k ∣ n / k := have H3 : m = m / k * k, from (nat.div_mul_cancel H1)⁻¹, have H4 : n = n / k * k, from (nat.div_mul_cancel (dvd.trans H1 H2))⁻¹, or.elim (eq_zero_or_pos k) (assume H5 : k = 0, have H6: n / k = 0, from (congr_arg _ H5 ⬝ !nat.div_zero), H6⁻¹ ▸ !dvd_zero) (assume H5 : k > 0, nat.dvd_of_mul_dvd_mul_right H5 (H3 ▸ H4 ▸ H2)) protected theorem div_eq_iff_eq_mul_right {m n : ℕ} (k : ℕ) (H : n > 0) (H' : n ∣ m) : m / n = k ↔ m = n * k := iff.intro (assume H1, by rewrite [-H1, nat.mul_div_cancel' H']) (assume H1, by rewrite [H1, !nat.mul_div_cancel_left H]) protected theorem div_eq_iff_eq_mul_left {m n : ℕ} (k : ℕ) (H : n > 0) (H' : n ∣ m) : m / n = k ↔ m = k * n := !mul.comm ▸ !nat.div_eq_iff_eq_mul_right H H' protected theorem eq_mul_of_div_eq_right {m n k : ℕ} (H1 : n ∣ m) (H2 : m / n = k) : m = n * k := calc m = n * (m / n) : nat.mul_div_cancel' H1 ... = n * k : H2 protected theorem div_eq_of_eq_mul_right {m n k : ℕ} (H1 : n > 0) (H2 : m = n * k) : m / n = k := calc m / n = n * k / n : H2 ... = k : !nat.mul_div_cancel_left H1 protected theorem eq_mul_of_div_eq_left {m n k : ℕ} (H1 : n ∣ m) (H2 : m / n = k) : m = k * n := !mul.comm ▸ !nat.eq_mul_of_div_eq_right H1 H2 protected theorem div_eq_of_eq_mul_left {m n k : ℕ} (H1 : n > 0) (H2 : m = k * n) : m / n = k := !nat.div_eq_of_eq_mul_right H1 (!mul.comm ▸ H2) lemma add_mod_eq_of_dvd (i j n : nat) : n ∣ j → (i + j) % n = i % n := assume h, obtain k (hk : j = n * k), from exists_eq_mul_right_of_dvd h, begin subst j, rewrite mul.comm, apply add_mul_mod_self end /- / and ordering -/ lemma le_of_dvd {m n : nat} : n > 0 → m ∣ n → m ≤ n := assume (h₁ : n > 0) (h₂ : m ∣ n), assert h₃ : n % m = 0, from mod_eq_zero_of_dvd h₂, by_contradiction (λ nle : ¬ m ≤ n, have h₄ : m > n, from lt_of_not_ge nle, assert h₅ : n % m = n, from mod_eq_of_lt h₄, begin rewrite h₃ at h₅, subst n, exact absurd h₁ (lt.irrefl 0) end) theorem div_mul_le (m n : ℕ) : m / n * n ≤ m := calc m = m / n * n + m % n : eq_div_mul_add_mod ... ≥ m / n * n : le_add_right protected theorem div_le_of_le_mul {m n k : ℕ} (H : m ≤ n * k) : m / k ≤ n := or.elim (eq_zero_or_pos k) (assume H1 : k = 0, calc m / k = m / 0 : H1 ... = 0 : nat.div_zero ... ≤ n : zero_le) (assume H1 : k > 0, le_of_mul_le_mul_right (calc m / k * k ≤ m / k * k + m % k : le_add_right ... = m : eq_div_mul_add_mod ... ≤ n * k : H) H1) protected theorem div_le_self (m n : ℕ) : m / n ≤ m := nat.cases_on n (!nat.div_zero⁻¹ ▸ !zero_le) take n, have H : m ≤ m * succ n, from calc m = m * 1 : mul_one ... ≤ m * succ n : !mul_le_mul_left (succ_le_succ !zero_le), nat.div_le_of_le_mul H protected theorem mul_le_of_le_div {m n k : ℕ} (H : m ≤ n / k) : m * k ≤ n := calc m * k ≤ n / k * k : !mul_le_mul_right H ... ≤ n : div_mul_le protected theorem le_div_of_mul_le {m n k : ℕ} (H1 : k > 0) (H2 : m * k ≤ n) : m ≤ n / k := have H3 : m * k < (succ (n / k)) * k, from calc m * k ≤ n : H2 ... = n / k * k + n % k : eq_div_mul_add_mod ... < n / k * k + k : add_lt_add_left (!mod_lt H1) ... = (succ (n / k)) * k : succ_mul, le_of_lt_succ (lt_of_mul_lt_mul_right H3) protected theorem le_div_iff_mul_le {m n k : ℕ} (H : k > 0) : m ≤ n / k ↔ m * k ≤ n := iff.intro !nat.mul_le_of_le_div (!nat.le_div_of_mul_le H) protected theorem div_le_div {m n : ℕ} (k : ℕ) (H : m ≤ n) : m / k ≤ n / k := by_cases_zero_pos k (by rewrite [*nat.div_zero]) (take k, assume H1 : k > 0, nat.le_div_of_mul_le H1 (le.trans !div_mul_le H)) protected theorem div_lt_of_lt_mul {m n k : ℕ} (H : m < n * k) : m / k < n := lt_of_mul_lt_mul_right (calc m / k * k ≤ m / k * k + m % k : le_add_right ... = m : eq_div_mul_add_mod ... < n * k : H) protected theorem lt_mul_of_div_lt {m n k : ℕ} (H1 : k > 0) (H2 : m / k < n) : m < n * k := assert H3 : succ (m / k) * k ≤ n * k, from !mul_le_mul_right (succ_le_of_lt H2), have H4 : m / k * k + k ≤ n * k, by rewrite [succ_mul at H3]; apply H3, calc m = m / k * k + m % k : eq_div_mul_add_mod ... < m / k * k + k : add_lt_add_left (!mod_lt H1) ... ≤ n * k : H4 protected theorem div_lt_iff_lt_mul {m n k : ℕ} (H : k > 0) : m / k < n ↔ m < n * k := iff.intro (!nat.lt_mul_of_div_lt H) !nat.div_lt_of_lt_mul protected theorem div_le_iff_le_mul_of_div {m n : ℕ} (k : ℕ) (H : n > 0) (H' : n ∣ m) : m / n ≤ k ↔ m ≤ k * n := by rewrite [propext (!le_iff_mul_le_mul_right H), !nat.div_mul_cancel H'] protected theorem le_mul_of_div_le_of_div {m n k : ℕ} (H1 : n > 0) (H2 : n ∣ m) (H3 : m / n ≤ k) : m ≤ k * n := iff.mp (!nat.div_le_iff_le_mul_of_div H1 H2) H3 -- needed for integer division theorem mul_sub_div_of_lt {m n k : ℕ} (H : k < m * n) : (m * n - (k + 1)) / m = n - k / m - 1 := begin have H1 : k / m < n, from nat.div_lt_of_lt_mul (!mul.comm ▸ H), have H2 : n - k / m ≥ 1, from nat.le_sub_of_add_le (calc 1 + k / m = succ (k / m) : add.comm ... ≤ n : succ_le_of_lt H1), have H3 : n - k / m = n - k / m - 1 + 1, from (nat.sub_add_cancel H2)⁻¹, have H4 : m > 0, from pos_of_ne_zero (assume H': m = 0, not_lt_zero k (begin rewrite [H' at H, zero_mul at H], exact H end)), have H5 : k % m + 1 ≤ m, from succ_le_of_lt (!mod_lt H4), have H6 : m - (k % m + 1) < m, from nat.sub_lt_self H4 !succ_pos, calc (m * n - (k + 1)) / m = (m * n - (k / m * m + k % m + 1)) / m : eq_div_mul_add_mod ... = (m * n - k / m * m - (k % m + 1)) / m : by rewrite [*nat.sub_sub] ... = ((n - k / m) * m - (k % m + 1)) / m : by rewrite [mul.comm m, nat.mul_sub_right_distrib] ... = ((n - k / m - 1) * m + m - (k % m + 1)) / m : by rewrite [H3 at {1}, right_distrib, nat.one_mul] ... = ((n - k / m - 1) * m + (m - (k % m + 1))) / m : {nat.add_sub_assoc H5 _} ... = (m - (k % m + 1)) / m + (n - k / m - 1) : by rewrite [add.comm, (add_mul_div_self H4)] ... = n - k / m - 1 : by rewrite [div_eq_zero_of_lt H6, zero_add] end private lemma div_div_aux (a b c : nat) : b > 0 → c > 0 → (a / b) / c = a / (b * c) := suppose b > 0, suppose c > 0, nat.strong_induction_on a (λ a ih, let k₁ := a / (b*c) in let k₂ := a %(b*c) in assert bc_pos : b*c > 0, from mul_pos `b > 0` `c > 0`, assert k₂ < b * c, from mod_lt _ bc_pos, assert k₂ ≤ a, from !mod_le, or.elim (eq_or_lt_of_le this) (suppose k₂ = a, assert i₁ : a < b * c, by rewrite -this; assumption, assert k₁ = 0, from div_eq_zero_of_lt i₁, assert a / b < c, by rewrite [mul.comm at i₁]; exact nat.div_lt_of_lt_mul i₁, begin rewrite [`k₁ = 0`], show (a / b) / c = 0, from div_eq_zero_of_lt `a / b < c` end) (suppose k₂ < a, assert a = k₁*(b*c) + k₂, from eq_div_mul_add_mod a (b*c), assert a / b = k₁*c + k₂ / b, by rewrite [this at {1}, mul.comm b c at {2}, -mul.assoc, add.comm, add_mul_div_self `b > 0`, add.comm], assert e₁ : (a / b) / c = k₁ + (k₂ / b) / c, by rewrite [this, add.comm, add_mul_div_self `c > 0`, add.comm], assert e₂ : (k₂ / b) / c = k₂ / (b * c), from ih k₂ `k₂ < a`, assert e₃ : k₂ / (b * c) = 0, from div_eq_zero_of_lt `k₂ < b * c`, assert (k₂ / b) / c = 0, by rewrite [e₂, e₃], show (a / b) / c = k₁, by rewrite [e₁, this])) protected lemma div_div_eq_div_mul (a b c : nat) : (a / b) / c = a / (b * c) := begin cases b with b, rewrite [zero_mul, *nat.div_zero, nat.zero_div], cases c with c, rewrite [mul_zero, *nat.div_zero], apply div_div_aux a (succ b) (succ c) dec_trivial dec_trivial end lemma div_lt_of_ne_zero : ∀ {n : nat}, n ≠ 0 → n / 2 < n | 0 h := absurd rfl h | (succ n) h := begin apply nat.div_lt_of_lt_mul, rewrite [-add_one, right_distrib], change n + 1 < (n * 1 + n) + (1 + 1), rewrite [mul_one, -add.assoc], apply add_lt_add_right, show n < n + n + 1, begin rewrite [add.assoc, -add_zero n at {1}], apply add_lt_add_left, apply zero_lt_succ end end end nat