/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: hit.suspension Authors: Floris van Doorn Declaration of suspension -/ import .pushout open pushout unit eq definition suspension (A : Type) : Type := pushout (λ(a : A), star) (λ(a : A), star) namespace suspension definition north (A : Type) : suspension A := inl _ _ star definition south (A : Type) : suspension A := inr _ _ star definition merid {A : Type} (a : A) : north A = south A := glue _ _ a protected definition rec {A : Type} {P : suspension A → Type} (PN : P !north) (PS : P !south) (Pm : Π(a : A), merid a ▹ PN = PS) (x : suspension A) : P x := begin fapply (pushout.rec_on _ _ x), { intro u, cases u, exact PN}, { intro u, cases u, exact PS}, { exact Pm}, end protected definition rec_on [reducible] {A : Type} {P : suspension A → Type} (y : suspension A) (PN : P !north) (PS : P !south) (Pm : Π(a : A), merid a ▹ PN = PS) : P y := rec PN PS Pm y definition rec_merid {A : Type} {P : suspension A → Type} (PN : P !north) (PS : P !south) (Pm : Π(a : A), merid a ▹ PN = PS) (a : A) : apD (rec PN PS Pm) (merid a) = sorry ⬝ Pm a ⬝ sorry := sorry protected definition elim {A : Type} {P : Type} (PN : P) (PS : P) (Pm : A → PN = PS) (x : suspension A) : P := rec PN PS (λa, !tr_constant ⬝ Pm a) x protected definition elim_on [reducible] {A : Type} {P : Type} (x : suspension A) (PN : P) (PS : P) (Pm : A → PN = PS) : P := rec PN PS (λa, !tr_constant ⬝ Pm a) x protected definition elim_merid {A : Type} {P : Type} (PN : P) (PS : P) (Pm : A → PN = PS) (x : suspension A) (a : A) : ap (elim PN PS Pm) (merid a) = sorry ⬝ Pm a ⬝ sorry := sorry end suspension