/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn, Jakob von Raumer Category of hsets -/ import ..category types.equiv ..functor types.lift ..limits open eq category equiv iso is_equiv is_trunc function sigma namespace category definition precategory_hset.{u} [reducible] [constructor] : precategory hset.{u} := precategory.mk (λx y : hset, x → y) (λx y z g f a, g (f a)) (λx a, a) (λx y z w h g f, eq_of_homotopy (λa, idp)) (λx y f, eq_of_homotopy (λa, idp)) (λx y f, eq_of_homotopy (λa, idp)) definition Precategory_hset [reducible] [constructor] : Precategory := Precategory.mk hset precategory_hset namespace set local attribute is_equiv_subtype_eq [instance] definition iso_of_equiv [constructor] {A B : Precategory_hset} (f : A ≃ B) : A ≅ B := iso.MK (to_fun f) (to_inv f) (eq_of_homotopy (left_inv (to_fun f))) (eq_of_homotopy (right_inv (to_fun f))) definition equiv_of_iso [constructor] {A B : Precategory_hset} (f : A ≅ B) : A ≃ B := begin apply equiv.MK (to_hom f) (iso.to_inv f), exact ap10 (to_right_inverse f), exact ap10 (to_left_inverse f) end definition is_equiv_iso_of_equiv [constructor] (A B : Precategory_hset) : is_equiv (@iso_of_equiv A B) := adjointify _ (λf, equiv_of_iso f) (λf, proof iso_eq idp qed) (λf, equiv_eq idp) local attribute is_equiv_iso_of_equiv [instance] definition iso_of_eq_eq_compose (A B : hset) : @iso_of_eq _ _ A B = @iso_of_equiv A B ∘ @equiv_of_eq A B ∘ subtype_eq_inv _ _ ∘ @ap _ _ (to_fun (trunctype.sigma_char 0)) A B := eq_of_homotopy (λp, eq.rec_on p idp) definition equiv_equiv_iso (A B : Precategory_hset) : (A ≃ B) ≃ (A ≅ B) := equiv.MK (λf, iso_of_equiv f) (λf, proof equiv.MK (to_hom f) (iso.to_inv f) (ap10 (to_right_inverse f)) (ap10 (to_left_inverse f)) qed) (λf, proof iso_eq idp qed) (λf, proof equiv_eq idp qed) definition equiv_eq_iso (A B : Precategory_hset) : (A ≃ B) = (A ≅ B) := ua !equiv_equiv_iso definition is_univalent_hset (A B : Precategory_hset) : is_equiv (iso_of_eq : A = B → A ≅ B) := assert H₁ : is_equiv (@iso_of_equiv A B ∘ @equiv_of_eq A B ∘ subtype_eq_inv _ _ ∘ @ap _ _ (to_fun (trunctype.sigma_char 0)) A B), from @is_equiv_compose _ _ _ _ _ (@is_equiv_compose _ _ _ _ _ (@is_equiv_compose _ _ _ _ _ _ (@is_equiv_subtype_eq_inv _ _ _ _ _)) !univalence) !is_equiv_iso_of_equiv, let H₂ := (iso_of_eq_eq_compose A B)⁻¹ in begin rewrite H₂ at H₁, assumption end end set definition category_hset [instance] [constructor] : category hset := category.mk precategory_hset set.is_univalent_hset definition Category_hset [reducible] [constructor] : Category := Category.mk hset category_hset abbreviation set [constructor] := Category_hset open functor lift definition lift_functor.{u v} [constructor] : set.{u} ⇒ set.{max u v} := functor.mk tlift (λa b, lift_functor) (λa, eq_of_homotopy (λx, by induction x; reflexivity)) (λa b c g f, eq_of_homotopy (λx, by induction x; reflexivity)) open pi sigma.ops local attribute Category.to.precategory [unfold 1] local attribute category.to_precategory [unfold 2] definition is_complete_cone.{u v w} [constructor] (I : Precategory.{v w}) (F : I ⇒ set.{max u v w}) : cone_obj F := begin fapply cone_obj.mk, { fapply trunctype.mk, { exact Σ(s : Π(i : I), trunctype.carrier (F i)), Π{i j : I} (f : i ⟶ j), F f (s i) = (s j)}, { exact abstract begin apply is_trunc_sigma, intro s, apply is_trunc_pi, intro i, apply is_trunc_pi, intro j, apply is_trunc_pi, intro f, apply is_trunc_eq end end}}, { fapply nat_trans.mk, { intro i x, esimp at x, exact x.1 i}, { intro i j f, esimp, apply eq_of_homotopy, intro x, esimp at x, induction x with s p, esimp, apply p}} end definition is_complete_set.{u v w} : is_complete.{(max u v w)+1 (max u v w) v w} set := begin intro I F, fapply has_terminal_object.mk, { exact is_complete_cone.{u v w} I F}, { intro c, esimp at *, induction c with X η, induction η with η p, esimp at *, fapply is_contr.mk, { fapply cone_hom.mk, { intro x, esimp at *, fapply sigma.mk, { intro i, exact η i x}, { intro i j f, exact ap10 (p f) x}}, { intro i, reflexivity}}, { esimp, intro h, induction h with f q, apply cone_hom_eq, esimp at *, apply eq_of_homotopy, intro x, fapply sigma_eq: esimp, { apply eq_of_homotopy, intro i, exact (ap10 (q i) x)⁻¹}, { apply is_hprop.elimo, apply is_trunc_pi, intro i, apply is_trunc_pi, intro j, apply is_trunc_pi, intro f, apply is_trunc_eq}}} end end category