import data.num namespace play constants int nat real : Type.{1} constant nat_add : nat → nat → nat constant int_add : int → int → int constant real_add : real → real → real inductive add_struct [class] (A : Type) := mk : (A → A → A) → add_struct A definition add {A : Type} {S : add_struct A} (a b : A) : A := add_struct.rec (λ m, m) S a b infixl `+` := add definition add_nat_struct [instance] : add_struct nat := add_struct.mk nat_add definition add_int_struct [instance] : add_struct int := add_struct.mk int_add definition add_real_struct [instance] : add_struct real := add_struct.mk real_add constants n m : nat constants i j : int constants x y : real constant num_to_nat : num → nat constant nat_to_int : nat → int constant int_to_real : int → real coercion num_to_nat coercion nat_to_int coercion int_to_real set_option pp.implicit true set_option pp.coercions true check n + m check i + j check x + y check i + n check i + x check n + i check x + i check n + x check x + n check x + i + n check n + 0 check 0 + n check 0 + i check i + 0 check 0 + x check x + 0 namespace foo constant eq {A : Type} : A → A → Prop infixl `=` := eq definition id (A : Type) (a : A) := a notation A `=` B `:` C := @eq C A B check nat_to_int n + nat_to_int m = (n + m) : int end foo end play