/- Copyright (c) 2016 Ulrik Buchholtz and Egbert Rijke. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Ulrik Buchholtz, Egbert Rijke The H-space structure on S³ and the quaternionic Hopf fibration (using the imaginaroid structure on S⁰). -/ import .complex_hopf .imaginaroid open eq equiv is_equiv circle is_conn trunc is_trunc sphere_index sphere susp open imaginaroid namespace hopf definition involutive_neg_empty [instance] : involutive_neg empty := ⦃ involutive_neg, neg := empty.elim, neg_neg := by intro a; induction a ⦄ definition involutive_neg_circle [instance] : involutive_neg circle := involutive_neg_susp definition has_star_circle [instance] : has_star circle := has_star_susp -- this is the "natural" conjugation defined using the base-loop recursor definition circle_star [reducible] : S¹ → S¹ := circle.elim base loop⁻¹ definition circle_neg_id (x : S¹) : -x = x := begin fapply (rec2_on x), { exact seg2⁻¹ }, { exact seg1 }, { apply eq_pathover, rewrite ap_id, krewrite elim_merid, apply square_of_eq, reflexivity }, { apply eq_pathover, rewrite ap_id, krewrite elim_merid, apply square_of_eq, apply trans (con.left_inv seg2), apply inverse, exact con.left_inv seg1 } end definition circle_mul_neg (x y : S¹) : x * (-y) = - x * y := by rewrite [circle_neg_id,circle_neg_id] definition circle_star_eq (x : S¹) : x* = circle_star x := begin fapply (rec2_on x), { reflexivity }, { exact seg2⁻¹ ⬝ (tr_constant seg1 base)⁻¹ }, { apply eq_pathover, krewrite elim_merid, rewrite elim_seg1, apply square_of_eq, apply trans (ap (λw, w ⬝ (tr_constant seg1 base)⁻¹) (con.right_inv seg2)⁻¹), apply con.assoc }, { apply eq_pathover, krewrite elim_merid, rewrite elim_seg2, apply square_of_eq, rewrite [↑loop,con_inv,inv_inv,idp_con], apply con.assoc } end open prod prod.ops definition circle_norm (x : S¹) : x * x* = 1 := begin rewrite circle_star_eq, induction x, { reflexivity }, { apply eq_pathover, rewrite ap_constant, krewrite [ap_compose' (λz : S¹ × S¹, circle_mul z.1 z.2) (λa : S¹, (a, circle_star a))], rewrite [ap_compose' (prod_functor (λa : S¹, a) circle_star) (λa : S¹, (a, a))], rewrite ap_diagonal, krewrite [ap_prod_functor (λa : S¹, a) circle_star loop loop], rewrite [ap_id,↑circle_star], krewrite elim_loop, krewrite (ap_binary circle_mul loop loop⁻¹), rewrite [ap_inv,↑circle_mul,elim_loop,ap_id,↑circle_turn,con.left_inv], constructor } end definition circle_star_mul (x y : S¹) : (x * y)* = y* * x* := begin induction x, { apply inverse, exact circle_mul_base (y*) }, { apply eq_pathover, induction y, { exact natural_square_tr (λa : S¹, ap (λb : S¹, b*) (circle_mul_base a)) loop }, { apply is_prop.elimo } } end definition imaginaroid_sphere_zero [instance] : imaginaroid (sphere (-1.+1)) := ⦃ imaginaroid, neg_neg := susp_neg_neg, mul := circle_mul, one_mul := circle_base_mul, mul_one := circle_mul_base, mul_neg := circle_mul_neg, norm := circle_norm, star_mul := circle_star_mul ⦄ local attribute sphere [reducible] open sphere.ops definition sphere_three_h_space [instance] : h_space (S 3) := @h_space_equiv_closed (join S¹ S¹) (cd_h_space (S -1.+1) circle_assoc) (S 3) (join.spheres 1 1) definition is_conn_sphere_three : is_conn 0 (S 3) := begin have le02 : trunc_index.le 0 2, from trunc_index.le.step (trunc_index.le.step (trunc_index.le.tr_refl 0)), exact @is_conn_of_le (S 3) 0 2 le02 (is_conn_sphere 3) -- apply is_conn_of_le (S 3) le02 -- doesn't find is_conn_sphere instance end local attribute is_conn_sphere_three [instance] definition quaternionic_hopf : S 7 → S 4 := begin intro x, apply @sigma.pr1 (susp (S 3)) (hopf (S 3)), apply inv (hopf.total (S 3)), apply inv (join.spheres 3 3), exact x end end hopf