/- Copyright (c) 2015 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Properties of is_trunc and trunctype -/ -- NOTE: the fact that (is_trunc n A) is a mere proposition is proved in .hprop_trunc import types.pi types.eq types.equiv ..function open eq sigma sigma.ops pi function equiv is_trunc.trunctype is_equiv prod is_trunc.trunc_index pointed nat namespace is_trunc variables {A B : Type} {n : trunc_index} /- theorems about trunctype -/ protected definition trunctype.sigma_char.{l} (n : trunc_index) : (trunctype.{l} n) ≃ (Σ (A : Type.{l}), is_trunc n A) := begin fapply equiv.MK, { intro A, exact (⟨carrier A, struct A⟩)}, { intro S, exact (trunctype.mk S.1 S.2)}, { intro S, induction S with S1 S2, reflexivity}, { intro A, induction A with A1 A2, reflexivity}, end definition trunctype_eq_equiv (n : trunc_index) (A B : n-Type) : (A = B) ≃ (carrier A = carrier B) := calc (A = B) ≃ (to_fun (trunctype.sigma_char n) A = to_fun (trunctype.sigma_char n) B) : eq_equiv_fn_eq_of_equiv ... ≃ ((to_fun (trunctype.sigma_char n) A).1 = (to_fun (trunctype.sigma_char n) B).1) : equiv.symm (!equiv_subtype) ... ≃ (carrier A = carrier B) : equiv.refl theorem is_trunc_is_embedding_closed (f : A → B) [Hf : is_embedding f] [HB : is_trunc n B] (Hn : -1 ≤ n) : is_trunc n A := begin induction n with n, {exact !empty.elim Hn}, {apply is_trunc_succ_intro, intro a a', fapply @is_trunc_is_equiv_closed_rev _ _ n (ap f)} end theorem is_trunc_is_retraction_closed (f : A → B) [Hf : is_retraction f] (n : trunc_index) [HA : is_trunc n A] : is_trunc n B := begin revert A B f Hf HA, induction n with n IH, { intro A B f Hf HA, induction Hf with g ε, fapply is_contr.mk, { exact f (center A)}, { intro b, apply concat, { apply (ap f), exact (center_eq (g b))}, { apply ε}}}, { intro A B f Hf HA, induction Hf with g ε, apply is_trunc_succ_intro, intro b b', fapply (IH (g b = g b')), { intro q, exact ((ε b)⁻¹ ⬝ ap f q ⬝ ε b')}, { apply (is_retraction.mk (ap g)), { intro p, induction p, {rewrite [↑ap, con.left_inv]}}}, { apply is_trunc_eq}} end definition is_embedding_to_fun (A B : Type) : is_embedding (@to_fun A B) := λf f', !is_equiv_ap_to_fun theorem is_trunc_trunctype [instance] (n : trunc_index) : is_trunc n.+1 (n-Type) := begin apply is_trunc_succ_intro, intro X Y, fapply is_trunc_equiv_closed, {apply equiv.symm, apply trunctype_eq_equiv}, fapply is_trunc_equiv_closed, {apply equiv.symm, apply eq_equiv_equiv}, induction n, {apply @is_contr_of_inhabited_hprop, {apply is_trunc_is_embedding_closed, {apply is_embedding_to_fun} , {exact unit.star}}, {apply equiv_of_is_contr_of_is_contr}}, {apply is_trunc_is_embedding_closed, {apply is_embedding_to_fun}, {exact unit.star}} end /- theorems about decidable equality and axiom K -/ theorem is_hset_of_axiom_K {A : Type} (K : Π{a : A} (p : a = a), p = idp) : is_hset A := is_hset.mk _ (λa b p q, eq.rec_on q K p) theorem is_hset_of_relation.{u} {A : Type.{u}} (R : A → A → Type.{u}) (mere : Π(a b : A), is_hprop (R a b)) (refl : Π(a : A), R a a) (imp : Π{a b : A}, R a b → a = b) : is_hset A := is_hset_of_axiom_K (λa p, have H2 : transport (λx, R a x → a = x) p (@imp a a) = @imp a a, from !apd, have H3 : Π(r : R a a), transport (λx, a = x) p (imp r) = imp (transport (λx, R a x) p r), from to_fun (equiv.symm !heq_pi) H2, have H4 : imp (refl a) ⬝ p = imp (refl a), from calc imp (refl a) ⬝ p = transport (λx, a = x) p (imp (refl a)) : transport_eq_r ... = imp (transport (λx, R a x) p (refl a)) : H3 ... = imp (refl a) : is_hprop.elim, cancel_left H4) definition relation_equiv_eq {A : Type} (R : A → A → Type) (mere : Π(a b : A), is_hprop (R a b)) (refl : Π(a : A), R a a) (imp : Π{a b : A}, R a b → a = b) (a b : A) : R a b ≃ a = b := @equiv_of_is_hprop _ _ _ (@is_trunc_eq _ _ (is_hset_of_relation R mere refl @imp) a b) imp (λp, p ▸ refl a) local attribute not [reducible] theorem is_hset_of_double_neg_elim {A : Type} (H : Π(a b : A), ¬¬a = b → a = b) : is_hset A := is_hset_of_relation (λa b, ¬¬a = b) _ (λa n, n idp) H section open decidable --this is proven differently in init.hedberg theorem is_hset_of_decidable_eq (A : Type) [H : decidable_eq A] : is_hset A := is_hset_of_double_neg_elim (λa b, by_contradiction) end theorem is_trunc_of_axiom_K_of_leq {A : Type} (n : trunc_index) (H : -1 ≤ n) (K : Π(a : A), is_trunc n (a = a)) : is_trunc (n.+1) A := @is_trunc_succ_intro _ _ (λa b, is_trunc_of_imp_is_trunc_of_leq H (λp, eq.rec_on p !K)) theorem is_trunc_succ_of_is_trunc_loop (Hn : -1 ≤ n) (Hp : Π(a : A), is_trunc n (a = a)) : is_trunc (n.+1) A := begin apply is_trunc_succ_intro, intros a a', apply is_trunc_of_imp_is_trunc_of_leq Hn, intro p, induction p, apply Hp end theorem is_hprop_iff_is_contr {A : Type} (a : A) : is_hprop A ↔ is_contr A := iff.intro (λH, is_contr.mk a (is_hprop.elim a)) _ theorem is_trunc_succ_iff_is_trunc_loop (A : Type) (Hn : -1 ≤ n) : is_trunc (n.+1) A ↔ Π(a : A), is_trunc n (a = a) := iff.intro _ (is_trunc_succ_of_is_trunc_loop Hn) theorem is_trunc_iff_is_contr_loop_succ (n : ℕ) (A : Type) : is_trunc n A ↔ Π(a : A), is_contr (Ω[succ n](Pointed.mk a)) := begin revert A, induction n with n IH, { intro A, esimp [Iterated_loop_space], transitivity _, { apply is_trunc_succ_iff_is_trunc_loop, apply le.refl}, { apply iff.pi_iff_pi, intro a, esimp, apply is_hprop_iff_is_contr, reflexivity}}, { intro A, esimp [Iterated_loop_space], transitivity _, apply @is_trunc_succ_iff_is_trunc_loop @n, esimp, constructor, apply iff.pi_iff_pi, intro a, transitivity _, apply IH, transitivity _, apply iff.pi_iff_pi, intro p, rewrite [iterated_loop_space_loop_irrel n p], apply iff.refl, esimp, apply iff.imp_iff, reflexivity} end theorem is_trunc_iff_is_contr_loop (n : ℕ) (A : Type) : is_trunc (n.-2.+1) A ↔ (Π(a : A), is_contr (Ω[n](pointed.Mk a))) := begin induction n with n, { esimp [sub_two,Iterated_loop_space], apply iff.intro, intro H a, exact is_contr_of_inhabited_hprop a, intro H, apply is_hprop_of_imp_is_contr, exact H}, { apply is_trunc_iff_is_contr_loop_succ}, end theorem is_contr_loop_of_is_trunc (n : ℕ) (A : Type*) [H : is_trunc (n.-2.+1) A] : is_contr (Ω[n] A) := by induction A; exact iff.mp !is_trunc_iff_is_contr_loop _ _ end is_trunc open is_trunc namespace trunc variable {A : Type} protected definition code (n : trunc_index) (aa aa' : trunc n.+1 A) : n-Type := trunc.rec_on aa (λa, trunc.rec_on aa' (λa', trunctype.mk' n (trunc n (a = a')))) protected definition encode (n : trunc_index) (aa aa' : trunc n.+1 A) : aa = aa' → trunc.code n aa aa' := begin intro p, induction p, apply (trunc.rec_on aa), intro a, esimp [trunc.code,trunc.rec_on], exact (tr idp) end protected definition decode (n : trunc_index) (aa aa' : trunc n.+1 A) : trunc.code n aa aa' → aa = aa' := begin eapply (trunc.rec_on aa'), eapply (trunc.rec_on aa), intro a a' x, esimp [trunc.code, trunc.rec_on] at x, apply (trunc.rec_on x), intro p, exact (ap tr p) end definition trunc_eq_equiv [constructor] (n : trunc_index) (aa aa' : trunc n.+1 A) : aa = aa' ≃ trunc.code n aa aa' := begin fapply equiv.MK, { apply trunc.encode}, { apply trunc.decode}, { eapply (trunc.rec_on aa'), eapply (trunc.rec_on aa), intro a a' x, esimp [trunc.code, trunc.rec_on] at x, refine (@trunc.rec_on n _ _ x _ _), intro x, apply is_trunc_eq, intro p, induction p, reflexivity}, { intro p, induction p, apply (trunc.rec_on aa), intro a, exact idp}, end definition tr_eq_tr_equiv [constructor] (n : trunc_index) (a a' : A) : (tr a = tr a' :> trunc n.+1 A) ≃ trunc n (a = a') := !trunc_eq_equiv definition is_trunc_trunc_of_is_trunc [instance] [priority 500] (A : Type) (n m : trunc_index) [H : is_trunc n A] : is_trunc n (trunc m A) := begin revert A m H, eapply (trunc_index.rec_on n), { clear n, intro A m H, apply is_contr_equiv_closed, { apply equiv.symm, apply trunc_equiv, apply (@is_trunc_of_leq _ -2), exact unit.star} }, { clear n, intro n IH A m H, induction m with m, { apply (@is_trunc_of_leq _ -2), exact unit.star}, { apply is_trunc_succ_intro, intro aa aa', apply (@trunc.rec_on _ _ _ aa (λy, !is_trunc_succ_of_is_hprop)), eapply (@trunc.rec_on _ _ _ aa' (λy, !is_trunc_succ_of_is_hprop)), intro a a', apply (is_trunc_equiv_closed_rev), { apply tr_eq_tr_equiv}, { exact (IH _ _ _)}}} end open equiv.ops definition unique_choice {P : A → Type} [H : Πa, is_hprop (P a)] (f : Πa, ∥ P a ∥) (a : A) : P a := !trunc_equiv (f a) /- transport over a truncated family -/ definition trunc_transport {a a' : A} {P : A → Type} (p : a = a') (n : trunc_index) (x : P a) : transport (λa, trunc n (P a)) p (tr x) = tr (p ▸ x) := by induction p; reflexivity end trunc open trunc namespace function variables {A B : Type} definition is_surjective_of_is_equiv [instance] (f : A → B) [H : is_equiv f] : is_surjective f := λb, !center definition is_equiv_equiv_is_embedding_times_is_surjective [constructor] (f : A → B) : is_equiv f ≃ (is_embedding f × is_surjective f) := equiv_of_is_hprop (λH, (_, _)) (λP, prod.rec_on P (λH₁ H₂, !is_equiv_of_is_surjective_of_is_embedding)) end function