/* Copyright (c) 2013 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura */ #include #include #include "kernel/free_vars.h" #include "kernel/expr_sets.h" #include "kernel/replace_fn.h" #include "kernel/for_each_fn.h" #include "kernel/metavar.h" namespace lean { /** \brief Functional object for checking whether a kernel expression has free variables or not. \remark We assume that a metavariable contains free variables. This is an approximation, since we don't know how the metavariable will be instantiated. */ class has_free_vars_fn { protected: expr_cell_offset_set m_cached; bool apply(optional const & e, unsigned offset) { return e && apply(*e, offset); } bool apply(expr const & e, unsigned offset) { // handle easy cases switch (e.kind()) { case expr_kind::Constant: if (!const_type(e)) return false; break; case expr_kind::Type: case expr_kind::Value: return false; case expr_kind::MetaVar: return true; case expr_kind::Var: return var_idx(e) >= offset; case expr_kind::App: case expr_kind::Lambda: case expr_kind::Pi: case expr_kind::Let: case expr_kind::Sigma: case expr_kind::Proj: case expr_kind::Pair: case expr_kind::HEq: break; } if (e.raw()->is_closed()) return false; if (offset == 0) { return apply_core(e, 0); } else { // The apply_core(e, 0) may seem redundant, but it allows us to // mark nested closed expressions. return apply_core(e, 0) && apply_core(e, offset); } } bool apply_core(expr const & e, unsigned offset) { bool shared = false; if (is_shared(e)) { shared = true; expr_cell_offset p(e.raw(), offset); if (m_cached.find(p) != m_cached.end()) return false; } bool result = false; switch (e.kind()) { case expr_kind::Constant: lean_assert(const_type(e)); result = apply(const_type(e), offset); break; case expr_kind::Type: case expr_kind::Value: case expr_kind::Var: case expr_kind::MetaVar: // easy cases were already handled lean_unreachable(); // LCOV_EXCL_LINE case expr_kind::App: result = std::any_of(begin_args(e), end_args(e), [=](expr const & arg){ return apply(arg, offset); }); break; case expr_kind::Lambda: case expr_kind::Pi: case expr_kind::Sigma: result = apply(abst_domain(e), offset) || apply(abst_body(e), offset + 1); break; case expr_kind::Let: result = apply(let_type(e), offset) || apply(let_value(e), offset) || apply(let_body(e), offset + 1); break; case expr_kind::HEq: result = apply(heq_lhs(e), offset) || apply(heq_rhs(e), offset); break; case expr_kind::Proj: result = apply(proj_arg(e), offset); break; case expr_kind::Pair: result = apply(pair_first(e), offset) || apply(pair_second(e), offset) || apply(pair_type(e), offset); break; } if (!result) { if (offset == 0) e.raw()->set_closed(); if (shared) m_cached.insert(expr_cell_offset(e.raw(), offset)); } return result; } public: has_free_vars_fn() {} bool operator()(expr const & e) { return apply(e, 0); } }; bool has_free_vars(expr const & e) { return has_free_vars_fn()(e); } /** \brief Functional object for computing the range [0, R) of free variables occurring in an expression. */ class free_var_range_fn { expr_map m_cached; optional const & m_menv; static unsigned dec(unsigned s) { return (s == 0) ? 0 : s - 1; } /* \brief If a metavariable \c m was defined in a context \c ctx and ctx.size() == R, then \c m can only contain free variables in the range [0, R) So, if \c m does not have an associated local context, the answer is just \c R. If \c m has an associated local context, we process it using the following rules [inst:s v] R ===> if s >= R then R else max(R-1, range_of(v)) [lift:s:n] R ===> if s >= R then R else R + n */ unsigned process_metavar(expr const & m) { lean_assert(is_metavar(m)); if (!m_menv) return std::numeric_limits::max(); // metavariable environment is not available, assume the worst. context ctx = (*m_menv)->get_context(metavar_name(m)); unsigned R = ctx.size(); if (has_local_context(m)) { local_context lctx = metavar_lctx(m); buffer lentries; to_buffer(lctx, lentries); unsigned i = lentries.size(); while (i > 0) { --i; local_entry const & entry = lentries[i]; if (entry.is_inst()) { if (entry.s() < R) { R = std::max(dec(R), apply(entry.v())); } } else { if (entry.s() < R) R += entry.n(); } } } return R; } unsigned apply(optional const & e) { return e ? apply(*e) : 0; } unsigned apply(expr const & e) { // handle easy cases switch (e.kind()) { case expr_kind::Constant: if (!const_type(e)) return 0; break; case expr_kind::Type: case expr_kind::Value: return 0; case expr_kind::Var: return var_idx(e) + 1; case expr_kind::MetaVar: case expr_kind::App: case expr_kind::Lambda: case expr_kind::Pi: case expr_kind::Let: case expr_kind::Sigma: case expr_kind::Proj: case expr_kind::Pair: case expr_kind::HEq: break; } if (e.raw()->is_closed()) return 0; bool shared = false; if (is_shared(e)) { shared = true; auto it = m_cached.find(e); if (it != m_cached.end()) return it->second; } unsigned result = 0; switch (e.kind()) { case expr_kind::Constant: lean_assert(const_type(e)); result = apply(const_type(e)); break; case expr_kind::Type: case expr_kind::Value: case expr_kind::Var: // easy cases were already handled lean_unreachable(); // LCOV_EXCL_LINE case expr_kind::MetaVar: result = process_metavar(e); break; case expr_kind::App: for (auto const & c : args(e)) result = std::max(result, apply(c)); break; case expr_kind::Lambda: case expr_kind::Pi: case expr_kind::Sigma: result = std::max(apply(abst_domain(e)), dec(apply(abst_body(e)))); break; case expr_kind::Let: result = std::max({apply(let_type(e)), apply(let_value(e)), dec(apply(let_body(e)))}); break; case expr_kind::HEq: result = std::max(apply(heq_lhs(e)), apply(heq_rhs(e))); break; case expr_kind::Proj: result = apply(proj_arg(e)); break; case expr_kind::Pair: result = std::max({apply(pair_first(e)), apply(pair_second(e)), apply(pair_type(e))}); break; } if (shared) m_cached.insert(mk_pair(e, result)); return result; } public: free_var_range_fn(optional const & menv):m_menv(menv) {} unsigned operator()(expr const & e) { return apply(e); } }; unsigned free_var_range(expr const & e, ro_metavar_env const & menv) { if (closed(e)) return 0; else return free_var_range_fn(some_ro_menv(menv))(e); } unsigned free_var_range(expr const & e) { return free_var_range_fn(none_ro_menv())(e); } /** \brief Functional object for checking whether a kernel expression has a free variable in the range [low, high) or not. \remark We assume that a metavariable contains free variables. This is an approximation, since we don't know how the metavariable will be instantiated. */ class has_free_var_in_range_fn { protected: unsigned m_low; unsigned m_high; expr_cell_offset_set m_cached; std::unique_ptr m_range_fn; bool apply(optional const & e, unsigned offset) { return e && apply(*e, offset); } // Return true iff m_low + offset <= vidx bool ge_lower(unsigned vidx, unsigned offset) const { unsigned low1 = m_low + offset; if (low1 < m_low) return false; // overflow, vidx can't be >= max unsigned return vidx >= low1; } // Return true iff vidx < m_high + offset bool lt_upper(unsigned vidx, unsigned offset) const { unsigned high1 = m_high + offset; if (high1 < m_high) return true; // overflow, vidx is always < max unsigned return vidx < high1; } // Return true iff m_low + offset <= vidx < m_high + offset bool in_interval(unsigned vidx, unsigned offset) const { return ge_lower(vidx, offset) && lt_upper(vidx, offset); } bool apply(expr const & e, unsigned offset) { // handle easy cases switch (e.kind()) { case expr_kind::Constant: if (!const_type(e)) return false; break; case expr_kind::Type: case expr_kind::Value: return false; case expr_kind::MetaVar: if (m_range_fn) break; // it is not cheap else return true; // assume that any free variable can occur in the metavariable case expr_kind::Var: return in_interval(var_idx(e), offset); case expr_kind::App: case expr_kind::Lambda: case expr_kind::Pi: case expr_kind::Let: case expr_kind::Sigma: case expr_kind::Proj: case expr_kind::Pair: case expr_kind::HEq: break; } if (e.raw()->is_closed()) return false; bool shared = false; if (is_shared(e)) { shared = true; expr_cell_offset p(e.raw(), offset); if (m_cached.find(p) != m_cached.end()) return false; } bool result = false; switch (e.kind()) { case expr_kind::Constant: lean_assert(const_type(e)); result = apply(const_type(e), offset); break; case expr_kind::Type: case expr_kind::Value: case expr_kind::Var: // easy cases were already handled lean_unreachable(); // LCOV_EXCL_LINE case expr_kind::MetaVar: { lean_assert(m_range_fn); unsigned R = (*m_range_fn)(e); if (R > 0) { unsigned max_fvar_idx = R - 1; result = ge_lower(max_fvar_idx, offset); // Remark: Variable #0 may occur in \c e. // So, we don't have to check the upper bound offset + m_high; } break; } case expr_kind::App: result = std::any_of(begin_args(e), end_args(e), [=](expr const & arg){ return apply(arg, offset); }); break; case expr_kind::Lambda: case expr_kind::Pi: case expr_kind::Sigma: result = apply(abst_domain(e), offset) || apply(abst_body(e), offset + 1); break; case expr_kind::Let: result = apply(let_type(e), offset) || apply(let_value(e), offset) || apply(let_body(e), offset + 1); break; case expr_kind::HEq: result = apply(heq_lhs(e), offset) || apply(heq_rhs(e), offset); break; case expr_kind::Proj: result = apply(proj_arg(e), offset); break; case expr_kind::Pair: result = apply(pair_first(e), offset) || apply(pair_second(e), offset) || apply(pair_type(e), offset); break; } if (!result && shared) { m_cached.insert(expr_cell_offset(e.raw(), offset)); } return result; } public: has_free_var_in_range_fn(unsigned low, unsigned high, optional const & menv): m_low(low), m_high(high) { lean_assert(low < high); if (menv) m_range_fn.reset(new free_var_range_fn(menv)); } bool operator()(expr const & e) { return apply(e, 0); } }; bool has_free_var(expr const & e, unsigned low, unsigned high, optional const & menv) { return high > low && !closed(e) && has_free_var_in_range_fn(low, high, menv)(e); } bool has_free_var(expr const & e, unsigned low, unsigned high, ro_metavar_env const & menv) { return has_free_var(e, low, high, some_ro_menv(menv)); } bool has_free_var(expr const & e, unsigned low, unsigned high) { return has_free_var(e, low, high, none_ro_menv()); } bool has_free_var(expr const & e, unsigned i, optional const & menv) { return has_free_var(e, i, i+1, menv); } bool has_free_var(expr const & e, unsigned i, ro_metavar_env const & menv) { return has_free_var(e, i, i+1, menv); } bool has_free_var(expr const & e, unsigned i) { return has_free_var(e, i, i+1); } bool has_free_var(context_entry const & e, unsigned low, unsigned high, ro_metavar_env const & menv) { if (high <= low) return false; auto d = e.get_domain(); auto b = e.get_body(); return (d && has_free_var(*d, low, high, menv)) || (b && has_free_var(*b, low, high, menv)); } bool has_free_var_ge(expr const & e, unsigned low, ro_metavar_env const & menv) { return has_free_var(e, low, std::numeric_limits::max(), menv); } bool has_free_var_ge(expr const & e, unsigned low, optional const & menv) { return has_free_var(e, low, std::numeric_limits::max(), menv); } bool has_free_var_ge(expr const & e, unsigned low) { return has_free_var(e, low, std::numeric_limits::max()); } expr lower_free_vars(expr const & e, unsigned s, unsigned d, optional const & DEBUG_CODE(menv)) { if (d == 0 || closed(e)) return e; lean_assert(s >= d); lean_assert(!has_free_var(e, s-d, s, menv)); return replace(e, [=](expr const & e, unsigned offset) -> expr { if (is_var(e) && var_idx(e) >= s + offset) { lean_assert(var_idx(e) >= offset + d); return mk_var(var_idx(e) - d); } else { return e; } }); } expr lower_free_vars(expr const & e, unsigned s, unsigned d, ro_metavar_env const & menv) { return lower_free_vars(e, s, d, some_ro_menv(menv)); } expr lower_free_vars(expr const & e, unsigned s, unsigned d) { return lower_free_vars(e, s, d, none_ro_menv()); } expr lower_free_vars(expr const & e, unsigned d, optional const & menv) { return lower_free_vars(e, d, d, menv); } expr lower_free_vars(expr const & e, unsigned d, ro_metavar_env const & menv) { return lower_free_vars(e, d, d, menv); } expr lower_free_vars(expr const & e, unsigned d) { return lower_free_vars(e, d, d); } context_entry lower_free_vars(context_entry const & e, unsigned s, unsigned d, ro_metavar_env const & menv) { auto domain = e.get_domain(); auto body = e.get_body(); if (domain && body) return context_entry(e.get_name(), lower_free_vars(*domain, s, d, menv), lower_free_vars(*body, s, d, menv)); else if (domain) return context_entry(e.get_name(), lower_free_vars(*domain, s, d, menv)); else return context_entry(e.get_name(), none_expr(), lower_free_vars(*body, s, d, menv)); } expr lift_free_vars(expr const & e, unsigned s, unsigned d, optional const & menv) { if (d == 0 || closed(e)) return e; return replace(e, [=](expr const & e, unsigned offset) -> expr { if (is_var(e) && var_idx(e) >= s + offset) { return mk_var(var_idx(e) + d); } else if (is_metavar(e)) { return add_lift(e, s + offset, d, menv); } else { return e; } }); } expr lift_free_vars(expr const & e, unsigned s, unsigned d, ro_metavar_env const & menv) { return lift_free_vars(e, s, d, some_ro_menv(menv)); } expr lift_free_vars(expr const & e, unsigned s, unsigned d) { return lift_free_vars(e, s, d, none_ro_menv()); } expr lift_free_vars(expr const & e, unsigned d, optional const & menv) { return lift_free_vars(e, 0, d, menv); } expr lift_free_vars(expr const & e, unsigned d) { return lift_free_vars(e, 0, d); } expr lift_free_vars(expr const & e, unsigned d, ro_metavar_env const & menv) { return lift_free_vars(e, 0, d, menv); } context_entry lift_free_vars(context_entry const & e, unsigned s, unsigned d, ro_metavar_env const & menv) { auto domain = e.get_domain(); auto body = e.get_body(); if (domain && body) return context_entry(e.get_name(), lift_free_vars(*domain, s, d, menv), lift_free_vars(*body, s, d, menv)); else if (domain) return context_entry(e.get_name(), lift_free_vars(*domain, s, d, menv)); else return context_entry(e.get_name(), none_expr(), lift_free_vars(*body, s, d, menv)); } }