/* Copyright (c) 2013 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura */ #include #include #include #include "environment.h" #include "exception.h" #include "debug.h" namespace lean { constexpr unsigned uninit = std::numeric_limits::max(); struct environment::imp { std::vector> m_uvar_distances; std::vector m_uvars; static int sub(int v, unsigned k) { long long r = static_cast(v) - static_cast(k); if (r < std::numeric_limits::min()) throw exception("universe overflow"); return static_cast(r); } static int add(int v, unsigned k) { long long r = static_cast(v) + static_cast(k); if (r > std::numeric_limits::max() - 1) throw exception("universe overflow"); return static_cast(r); } static unsigned add(unsigned v, unsigned k) { unsigned long long r = static_cast(v) + static_cast(k); if (r > std::numeric_limits::max() - 1) throw exception("universe overflow"); return static_cast(r); } /** \brief Return true iff l1 >= l2 + k */ bool is_ge(level const & l1, level const & l2, int k) { switch (kind(l2)) { case level_kind::UVar: switch (kind(l1)) { case level_kind::UVar: { unsigned d = m_uvar_distances[uvar_idx(l1)][uvar_idx(l2)]; return d != uninit && (k < 0 || (k >= 0 && d >= static_cast(k))); } case level_kind::Lift: return is_ge(lift_of(l1), l2, sub(k, lift_offset(l1))); case level_kind::Max: return is_ge(max_level1(l1), l2, k) || is_ge(max_level2(l1), l2, k); } case level_kind::Lift: return is_ge(l1, lift_of(l2), add(k, lift_offset(l2))); case level_kind::Max: return is_ge(l1, max_level1(l2), k) && is_ge(l1, max_level2(l2), k); } lean_unreachable(); return false; } bool is_ge(level const & l1, level const & l2) { return is_ge(l1, l2, 0); } level add_var(name const & n) { if (std::any_of(m_uvars.begin(), m_uvars.end(), [&](level const & l){ return uvar_name(l) == n; })) throw exception("invalid universe variable declaration, it has already been declared"); unsigned idx = m_uvars.size(); level r(n, idx); m_uvars.push_back(r); std::for_each(m_uvar_distances.begin(), m_uvar_distances.end(), [](std::vector & v) { v.push_back(uninit); }); m_uvar_distances.push_back(std::vector()); std::vector & d = m_uvar_distances.back(); d.resize(m_uvars.size(), static_cast(uninit)); d[idx] = 0; return r; } void add_constraint(uvar v1, uvar v2, unsigned d) { lean_assert(v1 != v2); unsigned num = m_uvar_distances.size(); lean_assert(v1 < num); lean_assert(v2 < num); std::vector & v1_dists = m_uvar_distances[v1]; if (v1_dists[v2] == uninit || d >= v1_dists[v2]) { v1_dists[v2] = d; // update forward std::vector & v2_dists = m_uvar_distances[v2]; for (uvar v3 = 0; v3 < num; v3++) { if (v2_dists[v3] != uninit) { lean_assert(v1 != v3); unsigned d_v1_v3 = add(d, v2_dists[v3]); if (v1_dists[v3] == uninit || d_v1_v3 >= v1_dists[v3]) v1_dists[v3] = d_v1_v3; } } } } void add_constraints(uvar v1, level const & l, unsigned k) { switch (kind(l)) { case level_kind::UVar: add_constraint(v1, uvar_idx(l), k); return; case level_kind::Lift: add_constraints(v1, lift_of(l), add(k, lift_offset(l))); return; case level_kind::Max: add_constraints(v1, max_level1(l), k); add_constraints(v1, max_level2(l), k); return; } lean_unreachable(); } level define_uvar(name const & n, level const & l) { level r = add_var(n); add_constraints(uvar_idx(r), l, 0); return r; } void init_uvars() { m_uvars.push_back(level()); m_uvar_distances.push_back(std::vector()); m_uvar_distances.back().push_back(0); lean_assert(uvar_idx(m_uvars.back()) == 0); } void display_uvars(std::ostream & out) const { std::for_each(m_uvars.begin(), m_uvars.end(), [&](level const & u) { std::vector const & u_dists = m_uvar_distances[uvar_idx(u)]; unsigned num = u_dists.size(); for (uvar v2 = 0; v2 < num; v2++) { if (v2 != uvar_idx(u) && u_dists[v2] != uninit) { out << uvar_name(u) << " >= " << uvar_name(m_uvars[v2]); if (u_dists[v2] > 0) out << " + " << u_dists[v2]; out << "\n"; } } }); } imp() { init_uvars(); } }; environment::environment(): m_imp(new imp) { } environment::~environment() { } level environment::define_uvar(name const & n, level const & l) { return m_imp->define_uvar(n, l); } bool environment::is_ge(level const & l1, level const & l2) const { return m_imp->is_ge(l1, l2); } void environment::display_uvars(std::ostream & out) const { m_imp->display_uvars(out); } }