/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn, Jakob von Raumer Sum precategory and (TODO) category -/ import ..category ..nat_trans types.sum open eq sum is_trunc functor lift nat_trans namespace category --set_option pp.universes true definition sum_hom.{u v w x} [unfold 5 6] {obC : Type.{u}} {obD : Type.{v}} (C : precategory.{u w} obC) (D : precategory.{v x} obD) : obC + obD → obC + obD → Type.{max w x} := sum.rec (λc, sum.rec (λc', lift (c ⟶ c')) (λd, lift empty)) (λd, sum.rec (λc, lift empty) (λd', lift (d ⟶ d'))) theorem is_set_sum_hom {obC : Type} {obD : Type} (C : precategory obC) (D : precategory obD) (x y : obC + obD) : is_set (sum_hom C D x y) := by induction x: induction y: esimp at *: exact _ local attribute is_set_sum_hom [instance] definition precategory_sum [constructor] [instance] (obC obD : Type) [C : precategory obC] [D : precategory obD] : precategory (obC + obD) := precategory.mk (sum_hom C D) (λ a b c g f, begin induction a: induction b: induction c: esimp at *; induction f with f; induction g with g; (contradiction | exact up (g ∘ f)) end) (λ a, by induction a: exact up id) (λ a b c d h g f, abstract begin induction a: induction b: induction c: induction d: esimp at *; induction f with f; induction g with g; induction h with h; esimp at *; try contradiction: apply ap up !assoc end end) (λ a b f, abstract begin induction a: induction b: esimp at *; induction f with f; esimp; try contradiction: exact ap up !id_left end end) (λ a b f, abstract begin induction a: induction b: esimp at *; induction f with f; esimp; try contradiction: exact ap up !id_right end end) definition Precategory_sum [constructor] (C D : Precategory) : Precategory := precategory.Mk (precategory_sum C D) infixr ` +c `:65 := Precategory_sum variables {C C' D D' : Precategory} definition inl_functor [constructor] : C ⇒ C +c D := functor.mk inl (λa b, up) (λa, idp) (λa b c g f, idp) definition inr_functor [constructor] : D ⇒ C +c D := functor.mk inr (λa b, up) (λa, idp) (λa b c g f, idp) definition sum_functor [constructor] (F : C ⇒ D) (G : C' ⇒ D) : C +c C' ⇒ D := begin fapply functor.mk: esimp, { intro a, induction a, exact F a, exact G a}, { intro a b f, induction a: induction b: esimp at *; induction f with f; esimp; try contradiction: (exact F f|exact G f)}, { exact abstract begin intro a, induction a: esimp; apply respect_id end end}, { intros a b c g f, induction a: induction b: induction c: esimp at *; induction f with f; induction g with g; try contradiction: esimp; apply respect_comp}, -- REPORT: abstracting this argument fails end infixr ` +f `:65 := sum_functor definition sum_functor_eta (F : C +c C' ⇒ D) : F ∘f inl_functor +f F ∘f inr_functor = F := begin fapply functor_eq: esimp, { intro a, induction a: reflexivity}, { exact abstract begin esimp, intro a b f, induction a: induction b: esimp at *; induction f with f; esimp; try contradiction: apply id_leftright end end} end definition sum_functor_inl (F : C ⇒ D) (G : C' ⇒ D) : (F +f G) ∘f inl_functor = F := begin fapply functor_eq, reflexivity, esimp, intros, apply id_leftright end definition sum_functor_inr (F : C ⇒ D) (G : C' ⇒ D) : (F +f G) ∘f inr_functor = G := begin fapply functor_eq, reflexivity, esimp, intros, apply id_leftright end definition sum_functor_sum [constructor] (F : C ⇒ D) (G : C' ⇒ D') : C +c C' ⇒ D +c D' := (inl_functor ∘f F) +f (inr_functor ∘f G) definition sum_nat_trans [constructor] {F F' : C ⇒ D} {G G' : C' ⇒ D} (η : F ⟹ F') (θ : G ⟹ G') : F +f G ⟹ F' +f G' := begin fapply nat_trans.mk, { intro a, induction a: esimp, exact η a, exact θ a}, { intro a b f, induction a: induction b: esimp at *; induction f with f; esimp; try contradiction: apply naturality} end infixr ` +n `:65 := sum_nat_trans end category