/- Copyright (c) 2014 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: data.nat.order Authors: Floris van Doorn, Leonardo de Moura, Jeremy Avigad The order relation on the natural numbers. -/ import data.nat.basic algebra.ordered_ring open eq.ops namespace nat /- lt and le -/ theorem le_of_lt_or_eq {m n : ℕ} (H : m < n ∨ m = n) : m ≤ n := or.elim H (take H1, le_of_lt H1) (take H1, H1 ▸ !le.refl) theorem lt.by_cases {a b : ℕ} {P : Prop} (H1 : a < b → P) (H2 : a = b → P) (H3 : b < a → P) : P := or.elim !lt.trichotomy (assume H, H1 H) (assume H, or.elim H (assume H', H2 H') (assume H', H3 H')) theorem lt_or_eq_of_le {m n : ℕ} (H : m ≤ n) : m < n ∨ m = n := lt.by_cases (assume H1 : m < n, or.inl H1) (assume H1 : m = n, or.inr H1) (assume H1 : m > n, absurd (lt_of_le_of_lt H H1) !lt.irrefl) theorem le_iff_lt_or_eq (m n : ℕ) : m ≤ n ↔ m < n ∨ m = n := iff.intro lt_or_eq_of_le le_of_lt_or_eq theorem lt_of_le_and_ne {m n : ℕ} (H1 : m ≤ n) (H2 : m ≠ n) : m < n := or.elim (lt_or_eq_of_le H1) (take H3 : m < n, H3) (take H3 : m = n, absurd H3 H2) theorem lt_iff_le_and_ne (m n : ℕ) : m < n ↔ m ≤ n ∧ m ≠ n := iff.intro (take H, and.intro (le_of_lt H) (take H1, lt.irrefl _ (H1 ▸ H))) (take H, lt_of_le_and_ne (and.elim_left H) (and.elim_right H)) theorem le_add_right (n k : ℕ) : n ≤ n + k := nat.induction_on k (calc n ≤ n : le.refl n ... = n + zero : add_zero) (λ k (ih : n ≤ n + k), calc n ≤ succ (n + k) : le_succ_of_le ih ... = n + succ k : add_succ) theorem le_add_left (n m : ℕ): n ≤ m + n := !add.comm ▸ !le_add_right theorem le.intro {n m k : ℕ} (h : n + k = m) : n ≤ m := h ▸ le_add_right n k theorem le.elim {n m : ℕ} (h : n ≤ m) : ∃k, n + k = m := le.rec_on h (exists.intro 0 rfl) (λ m (h : n < m), lt.rec_on h (exists.intro 1 rfl) (λ b hlt (ih : ∃ (k : ℕ), n + k = b), obtain (k : ℕ) (h : n + k = b), from ih, exists.intro (succ k) (calc n + succ k = succ (n + k) : add_succ ... = succ b : h))) theorem le.total {m n : ℕ} : m ≤ n ∨ n ≤ m := lt.by_cases (assume H : m < n, or.inl (le_of_lt H)) (assume H : m = n, or.inl (H ▸ !le.refl)) (assume H : m > n, or.inr (le_of_lt H)) /- addition -/ theorem add_le_add_left {n m : ℕ} (H : n ≤ m) (k : ℕ) : k + n ≤ k + m := obtain (l : ℕ) (Hl : n + l = m), from le.elim H, le.intro (calc k + n + l = k + (n + l) : !add.assoc ... = k + m : {Hl}) theorem add_le_add_right {n m : ℕ} (H : n ≤ m) (k : ℕ) : n + k ≤ m + k := !add.comm ▸ !add.comm ▸ add_le_add_left H k theorem le_of_add_le_add_left {k n m : ℕ} (H : k + n ≤ k + m) : n ≤ m := obtain (l : ℕ) (Hl : k + n + l = k + m), from (le.elim H), le.intro (add.cancel_left (calc k + (n + l) = k + n + l : (!add.assoc)⁻¹ ... = k + m : Hl)) theorem add_lt_add_left {n m : ℕ} (H : n < m) (k : ℕ) : k + n < k + m := lt_of_succ_le (!add_succ ▸ add_le_add_left (succ_le_of_lt H) k) theorem add_lt_add_right {n m : ℕ} (H : n < m) (k : ℕ) : n + k < m + k := !add.comm ▸ !add.comm ▸ add_lt_add_left H k theorem lt_add_of_pos_right {n k : ℕ} (H : k > 0) : n < n + k := !add_zero ▸ add_lt_add_left H n /- multiplication -/ theorem mul_le_mul_left {n m : ℕ} (H : n ≤ m) (k : ℕ) : k * n ≤ k * m := obtain (l : ℕ) (Hl : n + l = m), from le.elim H, have H2 : k * n + k * l = k * m, by rewrite [-mul.left_distrib, Hl], le.intro H2 theorem mul_le_mul_right {n m : ℕ} (H : n ≤ m) (k : ℕ) : n * k ≤ m * k := !mul.comm ▸ !mul.comm ▸ (mul_le_mul_left H k) theorem mul_le_mul {n m k l : ℕ} (H1 : n ≤ k) (H2 : m ≤ l) : n * m ≤ k * l := le.trans (mul_le_mul_right H1 m) (mul_le_mul_left H2 k) theorem mul_lt_mul_of_pos_left {n m k : ℕ} (H : n < m) (Hk : k > 0) : k * n < k * m := have H2 : k * n < k * n + k, from lt_add_of_pos_right Hk, have H3 : k * n + k ≤ k * m, from !mul_succ ▸ mul_le_mul_left (succ_le_of_lt H) k, lt_of_lt_of_le H2 H3 theorem mul_lt_mul_of_pos_right {n m k : ℕ} (H : n < m) (Hk : k > 0) : n * k < m * k := !mul.comm ▸ !mul.comm ▸ mul_lt_mul_of_pos_left H Hk theorem le.antisymm {n m : ℕ} (H1 : n ≤ m) (H2 : m ≤ n) : n = m := obtain (k : ℕ) (Hk : n + k = m), from (le.elim H1), obtain (l : ℕ) (Hl : m + l = n), from (le.elim H2), have L1 : k + l = 0, from add.cancel_left (calc n + (k + l) = n + k + l : (!add.assoc)⁻¹ ... = m + l : {Hk} ... = n : Hl ... = n + 0 : (!add_zero)⁻¹), have L2 : k = 0, from eq_zero_of_add_eq_zero_right L1, calc n = n + 0 : (!add_zero)⁻¹ ... = n + k : {L2⁻¹} ... = m : Hk theorem zero_le (n : ℕ) : 0 ≤ n := le.intro !zero_add /- nat is an instance of a linearly ordered semiring -/ section open [classes] algebra protected definition linear_ordered_semiring [instance] [reducible] : algebra.linear_ordered_semiring nat := ⦃ algebra.linear_ordered_semiring, nat.comm_semiring, add_left_cancel := @add.cancel_left, add_right_cancel := @add.cancel_right, lt := lt, le := le, le_refl := le.refl, le_trans := @le.trans, le_antisymm := @le.antisymm, le_total := @le.total, le_iff_lt_or_eq := @le_iff_lt_or_eq, lt_iff_le_ne := lt_iff_le_and_ne, add_le_add_left := @add_le_add_left, le_of_add_le_add_left := @le_of_add_le_add_left, zero_ne_one := ne.symm (succ_ne_zero zero), mul_le_mul_of_nonneg_left := (take a b c H1 H2, mul_le_mul_left H1 c), mul_le_mul_of_nonneg_right := (take a b c H1 H2, mul_le_mul_right H1 c), mul_lt_mul_of_pos_left := @mul_lt_mul_of_pos_left, mul_lt_mul_of_pos_right := @mul_lt_mul_of_pos_right ⦄ migrate from algebra with nat replacing has_le.ge → ge, has_lt.gt → gt hiding pos_of_mul_pos_left, pos_of_mul_pos_right, lt_of_mul_lt_mul_left, lt_of_mul_lt_mul_right end calc_trans ge_of_eq_of_ge calc_trans ge_of_ge_of_eq calc_trans gt_of_eq_of_gt calc_trans gt_of_gt_of_eq section port_algebra theorem add_pos_left : ∀{a : ℕ}, 0 < a → ∀b : ℕ, 0 < a + b := take a H b, @algebra.add_pos_of_pos_of_nonneg _ _ a b H !zero_le theorem add_pos_right : ∀{a : ℕ}, 0 < a → ∀b : ℕ, 0 < b + a := take a H b, !add.comm ▸ add_pos_left H b theorem add_eq_zero_iff_eq_zero_and_eq_zero : ∀{a b : ℕ}, a + b = 0 ↔ a = 0 ∧ b = 0 := take a b : ℕ, @algebra.add_eq_zero_iff_eq_zero_and_eq_zero_of_nonneg_of_nonneg _ _ a b !zero_le !zero_le theorem le_add_of_le_left : ∀{a b c : ℕ}, b ≤ c → b ≤ a + c := take a b c H, @algebra.le_add_of_nonneg_of_le _ _ a b c !zero_le H theorem le_add_of_le_right : ∀{a b c : ℕ}, b ≤ c → b ≤ c + a := take a b c H, @algebra.le_add_of_le_of_nonneg _ _ a b c H !zero_le theorem lt_add_of_lt_left : ∀{b c : ℕ}, b < c → ∀a, b < a + c := take b c H a, @algebra.lt_add_of_nonneg_of_lt _ _ a b c !zero_le H theorem lt_add_of_lt_right : ∀{b c : ℕ}, b < c → ∀a, b < c + a := take b c H a, @algebra.lt_add_of_lt_of_nonneg _ _ a b c H !zero_le theorem lt_of_mul_lt_mul_left : ∀{a b c : ℕ}, c * a < c * b → a < b := take a b c H, @algebra.lt_of_mul_lt_mul_left _ _ a b c H !zero_le theorem lt_of_mul_lt_mul_right : ∀{a b c : ℕ}, a * c < b * c → a < b := take a b c H, @algebra.lt_of_mul_lt_mul_right _ _ a b c H !zero_le theorem pos_of_mul_pos_left : ∀{a b : ℕ}, 0 < a * b → 0 < b := take a b H, @algebra.pos_of_mul_pos_left _ _ a b H !zero_le theorem pos_of_mul_pos_right : ∀{a b : ℕ}, 0 < a * b → 0 < a := take a b H, @algebra.pos_of_mul_pos_right _ _ a b H !zero_le end port_algebra theorem zero_le_one : 0 ≤ 1 := dec_trivial theorem zero_lt_one : 0 < 1 := dec_trivial /- properties specific to nat -/ theorem lt_intro {n m k : ℕ} (H : succ n + k = m) : n < m := lt_of_succ_le (le.intro H) theorem lt_elim {n m : ℕ} (H : n < m) : ∃k, succ n + k = m := le.elim (succ_le_of_lt H) theorem lt_add_succ (n m : ℕ) : n < n + succ m := lt_intro !succ_add_eq_succ_add theorem eq_zero_of_le_zero {n : ℕ} (H : n ≤ 0) : n = 0 := obtain (k : ℕ) (Hk : n + k = 0), from le.elim H, eq_zero_of_add_eq_zero_right Hk /- succ and pred -/ theorem lt_iff_succ_le (m n : nat) : m < n ↔ succ m ≤ n := iff.intro succ_le_of_lt lt_of_succ_le theorem not_succ_le_zero (n : ℕ) : ¬ succ n ≤ 0 := (assume H : succ n ≤ 0, have H2 : succ n = 0, from eq_zero_of_le_zero H, absurd H2 !succ_ne_zero) theorem succ_le_succ {n m : ℕ} (H : n ≤ m) : succ n ≤ succ m := !add_one ▸ !add_one ▸ add_le_add_right H 1 theorem le_of_succ_le_succ {n m : ℕ} (H : succ n ≤ succ m) : n ≤ m := le_of_add_le_add_right ((!add_one)⁻¹ ▸ (!add_one)⁻¹ ▸ H) theorem self_le_succ (n : ℕ) : n ≤ succ n := le.intro !add_one theorem succ_le_or_eq_of_le {n m : ℕ} (H : n ≤ m) : succ n ≤ m ∨ n = m := or.elim (lt_or_eq_of_le H) (assume H1 : n < m, or.inl (succ_le_of_lt H1)) (assume H1 : n = m, or.inr H1) theorem le_succ_of_pred_le {n m : ℕ} : pred n ≤ m → n ≤ succ m := nat.cases_on n (assume H : pred 0 ≤ m, !zero_le) (take n', assume H : pred (succ n') ≤ m, have H1 : n' ≤ m, from pred_succ n' ▸ H, succ_le_succ H1) theorem pred_le_of_le_succ {n m : ℕ} : n ≤ succ m → pred n ≤ m := nat.cases_on n (assume H, !pred_zero⁻¹ ▸ zero_le m) (take n', assume H : succ n' ≤ succ m, have H1 : n' ≤ m, from le_of_succ_le_succ H, !pred_succ⁻¹ ▸ H1) theorem succ_le_of_le_pred {n m : ℕ} : succ n ≤ m → n ≤ pred m := nat.cases_on m (assume H, absurd H !not_succ_le_zero) (take m', assume H : succ n ≤ succ m', have H1 : n ≤ m', from le_of_succ_le_succ H, !pred_succ⁻¹ ▸ H1) theorem pred_le_pred_of_le {n m : ℕ} : n ≤ m → pred n ≤ pred m := nat.cases_on n (assume H, pred_zero⁻¹ ▸ zero_le (pred m)) (take n', assume H : succ n' ≤ m, !pred_succ⁻¹ ▸ succ_le_of_le_pred H) theorem lt_of_pred_lt_pred {n m : ℕ} (H : pred n < pred m) : n < m := lt_of_not_le (take H1 : m ≤ n, not_lt_of_le (pred_le_pred_of_le H1) H) theorem le_or_eq_succ_of_le_succ {n m : ℕ} (H : n ≤ succ m) : n ≤ m ∨ n = succ m := or_of_or_of_imp_left (succ_le_or_eq_of_le H) (take H2 : succ n ≤ succ m, show n ≤ m, from le_of_succ_le_succ H2) theorem le_pred_self (n : ℕ) : pred n ≤ n := nat.cases_on n (pred_zero⁻¹ ▸ !le.refl) (take k : ℕ, (!pred_succ)⁻¹ ▸ !self_le_succ) theorem succ_pos (n : ℕ) : 0 < succ n := !zero_lt_succ theorem succ_pred_of_pos {n : ℕ} (H : n > 0) : succ (pred n) = n := (or_resolve_right (eq_zero_or_eq_succ_pred n) (ne.symm (ne_of_lt H)))⁻¹ theorem exists_eq_succ_of_lt {n m : ℕ} (H : n < m) : exists k, m = succ k := discriminate (take (Hm : m = 0), absurd (Hm ▸ H) !not_lt_zero) (take (l : ℕ) (Hm : m = succ l), exists.intro l Hm) theorem lt_succ_self (n : ℕ) : n < succ n := lt.base n theorem le_of_lt_succ {n m : ℕ} (H : n < succ m) : n ≤ m := le_of_succ_le_succ (succ_le_of_lt H) /- other forms of induction -/ protected theorem strong_induction_on {P : nat → Prop} (n : ℕ) (H : ∀n, (∀m, m < n → P m) → P n) : P n := have H1 : ∀ {n m : nat}, m < n → P m, from take n, nat.induction_on n (show ∀m, m < 0 → P m, from take m H, absurd H !not_lt_zero) (take n', assume IH : ∀ {m : nat}, m < n' → P m, have H2: P n', from H n' @IH, show ∀m, m < succ n' → P m, from take m, assume H3 : m < succ n', or.elim (lt_or_eq_of_le (le_of_lt_succ H3)) (assume H4: m < n', IH H4) (assume H4: m = n', H4⁻¹ ▸ H2)), H1 !lt_succ_self protected theorem case_strong_induction_on {P : nat → Prop} (a : nat) (H0 : P 0) (Hind : ∀(n : nat), (∀m, m ≤ n → P m) → P (succ n)) : P a := strong_induction_on a ( take n, show (∀m, m < n → P m) → P n, from nat.cases_on n (assume H : (∀m, m < 0 → P m), show P 0, from H0) (take n, assume H : (∀m, m < succ n → P m), show P (succ n), from Hind n (take m, assume H1 : m ≤ n, H _ (lt_succ_of_le H1)))) /- pos -/ theorem by_cases_zero_pos {P : ℕ → Prop} (y : ℕ) (H0 : P 0) (H1 : ∀ {y : nat}, y > 0 → P y) : P y := nat.cases_on y H0 (take y, H1 !succ_pos) theorem eq_zero_or_pos (n : ℕ) : n = 0 ∨ n > 0 := or_of_or_of_imp_left (or.swap (lt_or_eq_of_le !zero_le)) (take H : 0 = n, H⁻¹) theorem pos_of_ne_zero {n : ℕ} (H : n ≠ 0) : n > 0 := or.elim !eq_zero_or_pos (take H2 : n = 0, absurd H2 H) (take H2 : n > 0, H2) theorem ne_zero_of_pos {n : ℕ} (H : n > 0) : n ≠ 0 := ne.symm (ne_of_lt H) theorem exists_eq_succ_of_pos {n : ℕ} (H : n > 0) : exists l, n = succ l := exists_eq_succ_of_lt H theorem pos_of_dvd_of_pos {m n : ℕ} (H1 : (m | n)) (H2 : n > 0) : m > 0 := pos_of_ne_zero (assume H3 : m = 0, have H4 : n = 0, from eq_zero_of_zero_dvd (H3 ▸ H1), ne_of_lt H2 H4⁻¹) /- multiplication -/ theorem mul_lt_mul_of_le_of_lt {n m k l : ℕ} (Hk : k > 0) (H1 : n ≤ k) (H2 : m < l) : n * m < k * l := lt_of_le_of_lt (mul_le_mul_right H1 m) (mul_lt_mul_of_pos_left H2 Hk) theorem mul_lt_mul_of_lt_of_le {n m k l : ℕ} (Hl : l > 0) (H1 : n < k) (H2 : m ≤ l) : n * m < k * l := lt_of_le_of_lt (mul_le_mul_left H2 n) (mul_lt_mul_of_pos_right H1 Hl) theorem mul_lt_mul_of_le_of_le {n m k l : ℕ} (H1 : n < k) (H2 : m < l) : n * m < k * l := have H3 : n * m ≤ k * m, from mul_le_mul_right (le_of_lt H1) m, have H4 : k * m < k * l, from mul_lt_mul_of_pos_left H2 (lt_of_le_of_lt !zero_le H1), lt_of_le_of_lt H3 H4 theorem eq_of_mul_eq_mul_left {m k n : ℕ} (Hn : n > 0) (H : n * m = n * k) : m = k := have H2 : n * m ≤ n * k, from H ▸ !le.refl, have H3 : n * k ≤ n * m, from H ▸ !le.refl, have H4 : m ≤ k, from le_of_mul_le_mul_left H2 Hn, have H5 : k ≤ m, from le_of_mul_le_mul_left H3 Hn, le.antisymm H4 H5 theorem eq_of_mul_eq_mul_right {n m k : ℕ} (Hm : m > 0) (H : n * m = k * m) : n = k := eq_of_mul_eq_mul_left Hm (!mul.comm ▸ !mul.comm ▸ H) theorem eq_zero_or_eq_of_mul_eq_mul_left {n m k : ℕ} (H : n * m = n * k) : n = 0 ∨ m = k := or_of_or_of_imp_right !eq_zero_or_pos (assume Hn : n > 0, eq_of_mul_eq_mul_left Hn H) theorem eq_zero_or_eq_of_mul_eq_mul_right {n m k : ℕ} (H : n * m = k * m) : m = 0 ∨ n = k := eq_zero_or_eq_of_mul_eq_mul_left (!mul.comm ▸ !mul.comm ▸ H) theorem eq_one_of_mul_eq_one_right {n m : ℕ} (H : n * m = 1) : n = 1 := have H2 : n * m > 0, from H⁻¹ ▸ !succ_pos, have H3 : n > 0, from pos_of_mul_pos_right H2, have H4 : m > 0, from pos_of_mul_pos_left H2, or.elim (le_or_gt n 1) (assume H5 : n ≤ 1, show n = 1, from le.antisymm H5 (succ_le_of_lt H3)) (assume H5 : n > 1, have H6 : n * m ≥ 2 * 1, from mul_le_mul (succ_le_of_lt H5) (succ_le_of_lt H4), have H7 : 1 ≥ 2, from !mul_one ▸ H ▸ H6, absurd !lt_succ_self (not_lt_of_le H7)) theorem eq_one_of_mul_eq_one_left {n m : ℕ} (H : n * m = 1) : m = 1 := eq_one_of_mul_eq_one_right (!mul.comm ▸ H) theorem eq_one_of_mul_eq_self_left {n m : ℕ} (Hpos : n > 0) (H : m * n = n) : m = 1 := eq_of_mul_eq_mul_right Hpos (H ⬝ !one_mul⁻¹) theorem eq_one_of_mul_eq_self_right {n m : ℕ} (Hpos : m > 0) (H : m * n = m) : n = 1 := eq_one_of_mul_eq_self_left Hpos (!mul.comm ▸ H) theorem eq_one_of_dvd_one {n : ℕ} (H : (n | 1)) : n = 1 := dvd.elim H (take m, assume H1 : 1 = n * m, eq_one_of_mul_eq_one_right H1⁻¹) end nat