/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: data.perm Author: Leonardo de Moura List permutations -/ import data.list open list setoid variable {A : Type} inductive perm : list A → list A → Prop := | nil : perm [] [] | skip : Π (x : A) {l₁ l₂ : list A}, perm l₁ l₂ → perm (x::l₁) (x::l₂) | swap : Π (x y : A) (l : list A), perm (y::x::l) (x::y::l) | trans : Π {l₁ l₂ l₃ : list A}, perm l₁ l₂ → perm l₂ l₃ → perm l₁ l₃ namespace perm theorem eq_nil_of_perm_nil {l₁ : list A} (p : perm [] l₁) : l₁ = [] := have gen : ∀ (l₂ : list A) (p : perm l₂ l₁), l₂ = [] → l₁ = [], from take l₂ p, perm.induction_on p (λ h, h) (λ x y l₁ l₂ p₁ r₁, list.no_confusion r₁) (λ x y l e, list.no_confusion e) (λ l₁ l₂ l₃ p₁ p₂ r₁ r₂ e, r₂ (r₁ e)), gen [] p rfl theorem not_perm_nil_cons (x : A) (l : list A) : ¬ perm [] (x::l) := have gen : ∀ (l₁ l₂ : list A) (p : perm l₁ l₂), l₁ = [] → l₂ = (x::l) → false, from take l₁ l₂ p, perm.induction_on p (λ e₁ e₂, list.no_confusion e₂) (λ x l₁ l₂ p₁ r₁ e₁ e₂, list.no_confusion e₁) (λ x y l e₁ e₂, list.no_confusion e₁) (λ l₁ l₂ l₃ p₁ p₂ r₁ r₂ e₁ e₂, begin rewrite [e₂ at *, e₁ at *], have e₃ : l₂ = [], from eq_nil_of_perm_nil p₁, exact (r₂ e₃ rfl) end), assume p, gen [] (x::l) p rfl rfl protected theorem refl : ∀ (l : list A), perm l l | [] := nil | (x::xs) := skip x (refl xs) protected theorem symm : ∀ {l₁ l₂ : list A}, perm l₁ l₂ → perm l₂ l₁ := take l₁ l₂ p, perm.induction_on p nil (λ x l₁ l₂ p₁ r₁, skip x r₁) (λ x y l, swap y x l) (λ l₁ l₂ l₃ p₁ p₂ r₁ r₂, trans r₂ r₁) theorem is_eqv (A : Type) : equivalence (@perm A) := mk_equivalence (@perm A) (@refl A) (@symm A) (@trans A) protected definition is_setoid [instance] (A : Type) : setoid (list A) := setoid.mk (@perm A) (is_eqv A) theorem mem_perm (a : A) (l₁ l₂ : list A) : perm l₁ l₂ → a ∈ l₁ → a ∈ l₂ := assume p, perm.induction_on p (λ h, h) (λ x l₁ l₂ p₁ r₁ i, or.elim i (λ aeqx, by rewrite aeqx; apply !mem_cons) (λ ainl₁ : a ∈ l₁, or.inr (r₁ ainl₁))) (λ x y l ainyxl, or.elim ainyxl (λ aeqy : a = y, by rewrite aeqy; exact (or.inr !mem_cons)) (λ ainxl : a ∈ x::l, or.elim ainxl (λ aeqx : a = x, or.inl aeqx) (λ ainl : a ∈ l, or.inr (or.inr ainl)))) (λ l₁ l₂ l₃ p₁ p₂ r₁ r₂ ainl₁, r₂ (r₁ ainl₁)) theorem perm_app_left {l₁ l₂ : list A} (t₁ : list A) : perm l₁ l₂ → perm (l₁++t₁) (l₂++t₁) := assume p, perm.induction_on p !refl (λ x l₁ l₂ p₁ r₁, skip x r₁) (λ x y l, !swap) (λ l₁ l₂ l₃ p₁ p₂ r₁ r₂, trans r₁ r₂) theorem perm_app_right (l : list A) {t₁ t₂ : list A} : perm t₁ t₂ → perm (l++t₁) (l++t₂) := list.induction_on l (λ p, p) (λ x xs r p, skip x (r p)) theorem perm_app {l₁ l₂ t₁ t₂ : list A} : perm l₁ l₂ → perm t₁ t₂ → perm (l₁++t₁) (l₂++t₂) := assume p₁ p₂, trans (perm_app_left t₁ p₁) (perm_app_right l₂ p₂) theorem perm_app_cons (a : A) {h₁ h₂ t₁ t₂ : list A} : perm h₁ h₂ → perm t₁ t₂ → perm (h₁ ++ (a::t₁)) (h₂ ++ (a::t₂)) := assume p₁ p₂, perm_app p₁ (skip a p₂) theorem perm_cons_app (a : A) : ∀ (l : list A), perm (a::l) (l ++ [a]) | [] := !refl | (x::xs) := show perm (a::x::xs) (x::(xs ++ [a])), from have p₁ : perm (a::xs) (xs++[a]), from perm_cons_app xs, have p₂ : perm (x::a::xs) (x::(xs++[a])), from skip x p₁, have p₃ : perm (a::x::xs) (x::a::xs), from swap x a xs, trans p₃ p₂ theorem perm_app_comm {l₁ l₂ : list A} : perm (l₁++l₂) (l₂++l₁) := list.induction_on l₁ (by rewrite [append_nil_right, append_nil_left]; apply refl) (λ a t r, show perm (a::(t++l₂)) (l₂++(a::t)), from begin have p₀ : perm (a::(t++l₂)) (a::(l₂++t)), from skip a r, have p₁ : perm (a::(l₂++t)) (l₂++t++[a]), from !perm_cons_app, have p₂ : perm (t++[a]) (a::t), from symm (perm_cons_app a t), have p₃ : perm (l₂++(t++[a])) (l₂++(a::t)), from perm_app_right l₂ p₂, rewrite [append.assoc at p₁], exact (trans p₀ (trans p₁ p₃)) end) theorem length_eq_lenght_of_perm {l₁ l₂ : list A} : perm l₁ l₂ → length l₁ = length l₂ := assume p, perm.induction_on p rfl (λ x l₁ l₂ p r, by rewrite [*length_cons, r]) (λ x y l, by rewrite *length_cons) (λ l₁ l₂ l₃ p₁ p₂ r₁ r₂, eq.trans r₁ r₂) theorem eq_singlenton_of_perm_inv (a : A) {l : list A} : perm [a] l → l = [a] := have gen : ∀ l₂, perm l₂ l → l₂ = [a] → l = [a], from take l₂, assume p, perm.induction_on p (λ e, e) (λ x l₁ l₂ p r e, list.no_confusion e (λ (e₁ : x = a) (e₂ : l₁ = []), begin rewrite [e₁, e₂ at p], have h₁ : l₂ = [], from eq_nil_of_perm_nil p, rewrite h₁ end)) (λ x y l e, list.no_confusion e (λ e₁ e₂, list.no_confusion e₂)) (λ l₁ l₂ l₃ p₁ p₂ r₁ r₂ e, r₂ (r₁ e)), assume p, gen [a] p rfl theorem eq_singlenton_of_perm (a b : A) : perm [a] [b] → a = b := assume p, list.no_confusion (eq_singlenton_of_perm_inv a p) (λ e₁ e₂, by rewrite e₁) theorem perm_rev : ∀ (l : list A), perm l (reverse l) | [] := nil | (x::xs) := begin rewrite [reverse_cons, concat_eq_append], apply (trans (perm_cons_app x xs)), exact (perm_app_left [x] (perm_rev xs)) end end perm