/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Declaration of the pushout -/ import .quotient types.sigma types.arrow_2 open quotient eq sum equiv is_trunc namespace pushout section parameters {TL BL TR : Type} (f : TL → BL) (g : TL → TR) local abbreviation A := BL + TR inductive pushout_rel : A → A → Type := | Rmk : Π(x : TL), pushout_rel (inl (f x)) (inr (g x)) open pushout_rel local abbreviation R := pushout_rel definition pushout : Type := quotient R -- TODO: define this in root namespace parameters {f g} definition inl (x : BL) : pushout := class_of R (inl x) definition inr (x : TR) : pushout := class_of R (inr x) definition glue (x : TL) : inl (f x) = inr (g x) := eq_of_rel pushout_rel (Rmk f g x) protected definition rec {P : pushout → Type} (Pinl : Π(x : BL), P (inl x)) (Pinr : Π(x : TR), P (inr x)) (Pglue : Π(x : TL), Pinl (f x) =[glue x] Pinr (g x)) (y : pushout) : P y := begin induction y, { cases a, apply Pinl, apply Pinr}, { cases H, apply Pglue} end protected definition rec_on [reducible] {P : pushout → Type} (y : pushout) (Pinl : Π(x : BL), P (inl x)) (Pinr : Π(x : TR), P (inr x)) (Pglue : Π(x : TL), Pinl (f x) =[glue x] Pinr (g x)) : P y := rec Pinl Pinr Pglue y theorem rec_glue {P : pushout → Type} (Pinl : Π(x : BL), P (inl x)) (Pinr : Π(x : TR), P (inr x)) (Pglue : Π(x : TL), Pinl (f x) =[glue x] Pinr (g x)) (x : TL) : apd (rec Pinl Pinr Pglue) (glue x) = Pglue x := !rec_eq_of_rel protected definition elim {P : Type} (Pinl : BL → P) (Pinr : TR → P) (Pglue : Π(x : TL), Pinl (f x) = Pinr (g x)) (y : pushout) : P := rec Pinl Pinr (λx, pathover_of_eq (Pglue x)) y protected definition elim_on [reducible] {P : Type} (y : pushout) (Pinl : BL → P) (Pinr : TR → P) (Pglue : Π(x : TL), Pinl (f x) = Pinr (g x)) : P := elim Pinl Pinr Pglue y theorem elim_glue {P : Type} (Pinl : BL → P) (Pinr : TR → P) (Pglue : Π(x : TL), Pinl (f x) = Pinr (g x)) (x : TL) : ap (elim Pinl Pinr Pglue) (glue x) = Pglue x := begin apply eq_of_fn_eq_fn_inv !(pathover_constant (glue x)), rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑pushout.elim,rec_glue], end protected definition elim_type (Pinl : BL → Type) (Pinr : TR → Type) (Pglue : Π(x : TL), Pinl (f x) ≃ Pinr (g x)) (y : pushout) : Type := elim Pinl Pinr (λx, ua (Pglue x)) y protected definition elim_type_on [reducible] (y : pushout) (Pinl : BL → Type) (Pinr : TR → Type) (Pglue : Π(x : TL), Pinl (f x) ≃ Pinr (g x)) : Type := elim_type Pinl Pinr Pglue y theorem elim_type_glue (Pinl : BL → Type) (Pinr : TR → Type) (Pglue : Π(x : TL), Pinl (f x) ≃ Pinr (g x)) (x : TL) : transport (elim_type Pinl Pinr Pglue) (glue x) = Pglue x := by rewrite [tr_eq_cast_ap_fn,↑elim_type,elim_glue];apply cast_ua_fn protected definition rec_prop {P : pushout → Type} [H : Πx, is_prop (P x)] (Pinl : Π(x : BL), P (inl x)) (Pinr : Π(x : TR), P (inr x)) (y : pushout) := rec Pinl Pinr (λx, !is_prop.elimo) y protected definition elim_prop {P : Type} [H : is_prop P] (Pinl : BL → P) (Pinr : TR → P) (y : pushout) : P := elim Pinl Pinr (λa, !is_prop.elim) y end end pushout attribute pushout.inl pushout.inr [constructor] attribute pushout.rec pushout.elim [unfold 10] [recursor 10] attribute pushout.elim_type [unfold 9] attribute pushout.rec_on pushout.elim_on [unfold 7] attribute pushout.elim_type_on [unfold 6] open sigma namespace pushout variables {TL BL TR : Type} (f : TL → BL) (g : TL → TR) /- The non-dependent universal property -/ definition pushout_arrow_equiv (C : Type) : (pushout f g → C) ≃ (Σ(i : BL → C) (j : TR → C), Πc, i (f c) = j (g c)) := begin fapply equiv.MK, { intro f, exact ⟨λx, f (inl x), λx, f (inr x), λx, ap f (glue x)⟩}, { intro v x, induction v with i w, induction w with j p, induction x, exact (i a), exact (j a), exact (p x)}, { intro v, induction v with i w, induction w with j p, esimp, apply ap (λp, ⟨i, j, p⟩), apply eq_of_homotopy, intro x, apply elim_glue}, { intro f, apply eq_of_homotopy, intro x, induction x: esimp, apply eq_pathover, apply hdeg_square, esimp, apply elim_glue}, end /- glue squares -/ protected definition glue_square {x x' : TL} (p : x = x') : square (glue x) (glue x') (ap inl (ap f p)) (ap inr (ap g p)) := by cases p; apply vrefl end pushout open function sigma.ops namespace pushout /- The flattening lemma -/ section universe variable u parameters {TL BL TR : Type} (f : TL → BL) (g : TL → TR) (Pinl : BL → Type.{u}) (Pinr : TR → Type.{u}) (Pglue : Π(x : TL), Pinl (f x) ≃ Pinr (g x)) include Pglue local abbreviation A := BL + TR local abbreviation R : A → A → Type := pushout_rel f g local abbreviation P [unfold 5] := pushout.elim_type Pinl Pinr Pglue local abbreviation F : sigma (Pinl ∘ f) → sigma Pinl := λz, ⟨ f z.1 , z.2 ⟩ local abbreviation G : sigma (Pinl ∘ f) → sigma Pinr := λz, ⟨ g z.1 , Pglue z.1 z.2 ⟩ local abbreviation Pglue' : Π ⦃a a' : A⦄, R a a' → sum.rec Pinl Pinr a ≃ sum.rec Pinl Pinr a' := @pushout_rel.rec TL BL TR f g (λ ⦃a a' ⦄ (r : R a a'), (sum.rec Pinl Pinr a) ≃ (sum.rec Pinl Pinr a')) Pglue protected definition flattening : sigma P ≃ pushout F G := begin have H : Πz, P z ≃ quotient.elim_type (sum.rec Pinl Pinr) Pglue' z, begin intro z, apply equiv_of_eq, have H1 : pushout.elim_type Pinl Pinr Pglue = quotient.elim_type (sum.rec Pinl Pinr) Pglue', begin change quotient.rec (sum.rec Pinl Pinr) (λa a' r, pushout_rel.cases_on r (λx, pathover_of_eq (ua (Pglue x)))) = quotient.rec (sum.rec Pinl Pinr) (λa a' r, pathover_of_eq (ua (pushout_rel.cases_on r Pglue))), have H2 : Π⦃a a'⦄ r : pushout_rel f g a a', pushout_rel.cases_on r (λx, pathover_of_eq (ua (Pglue x))) = pathover_of_eq (ua (pushout_rel.cases_on r Pglue)) :> sum.rec Pinl Pinr a =[eq_of_rel (pushout_rel f g) r] sum.rec Pinl Pinr a', begin intros a a' r, cases r, reflexivity end, rewrite (eq_of_homotopy3 H2) end, apply ap10 H1 end, apply equiv.trans (sigma_equiv_sigma_right H), apply equiv.trans (quotient.flattening.flattening_lemma R (sum.rec Pinl Pinr) Pglue'), fapply equiv.MK, { intro q, induction q with z z z' fr, { induction z with a p, induction a with x x, { exact inl ⟨x, p⟩ }, { exact inr ⟨x, p⟩ } }, { induction fr with a a' r p, induction r with x, exact glue ⟨x, p⟩ } }, { intro q, induction q with xp xp xp, { exact class_of _ ⟨sum.inl xp.1, xp.2⟩ }, { exact class_of _ ⟨sum.inr xp.1, xp.2⟩ }, { apply eq_of_rel, constructor } }, { intro q, induction q with xp xp xp: induction xp with x p, { apply ap inl, reflexivity }, { apply ap inr, reflexivity }, { unfold F, unfold G, apply eq_pathover, rewrite [ap_id,ap_compose' (quotient.elim _ _)], krewrite elim_glue, krewrite elim_eq_of_rel, apply hrefl } }, { intro q, induction q with z z z' fr, { induction z with a p, induction a with x x, { reflexivity }, { reflexivity } }, { induction fr with a a' r p, induction r with x, esimp, apply eq_pathover, rewrite [ap_id,ap_compose' (pushout.elim _ _ _)], krewrite elim_eq_of_rel, krewrite elim_glue, apply hrefl } } end end -- Commutativity of pushouts section variables {TL BL TR : Type} (f : TL → BL) (g : TL → TR) protected definition transpose [constructor] : pushout f g → pushout g f := begin intro x, induction x, apply inr a, apply inl a, apply !glue⁻¹ end --TODO prove without krewrite? protected definition transpose_involutive (x : pushout f g) : pushout.transpose g f (pushout.transpose f g x) = x := begin induction x, apply idp, apply idp, apply eq_pathover, refine _ ⬝hp !ap_id⁻¹, refine !(ap_compose (pushout.transpose _ _)) ⬝ph _, esimp[pushout.transpose], krewrite [elim_glue, ap_inv, elim_glue, inv_inv], apply hrfl end protected definition symm : pushout f g ≃ pushout g f := begin fapply equiv.MK, do 2 exact !pushout.transpose, do 2 (intro x; apply pushout.transpose_involutive), end end -- Functoriality of pushouts section section lemmas variables {X : Type} {x₀ x₁ x₂ x₃ : X} (p : x₀ = x₁) (q : x₁ = x₂) (r : x₂ = x₃) private definition is_equiv_functor_lemma₁ : (r ⬝ ((p ⬝ q ⬝ r)⁻¹ ⬝ p)) = q⁻¹ := by cases p; cases r; cases q; reflexivity private definition is_equiv_functor_lemma₂ : (p ⬝ q ⬝ r)⁻¹ ⬝ (p ⬝ q) = r⁻¹ := by cases p; cases r; cases q; reflexivity end lemmas variables {TL BL TR : Type} (f : TL → BL) (g : TL → TR) {TL' BL' TR' : Type} (f' : TL' → BL') (g' : TL' → TR') (tl : TL → TL') (bl : BL → BL') (tr : TR → TR') (fh : bl ∘ f ~ f' ∘ tl) (gh : tr ∘ g ~ g' ∘ tl) include fh gh protected definition functor [reducible] : pushout f g → pushout f' g' := begin intro x, induction x with a b z, { exact inl (bl a) }, { exact inr (tr b) }, { exact (ap inl (fh z)) ⬝ glue (tl z) ⬝ (ap inr (gh z)⁻¹) } end protected definition ap_functor_inl [reducible] {x x' : BL} (p : x = x') : ap (pushout.functor f g f' g' tl bl tr fh gh) (ap inl p) = ap inl (ap bl p) := by cases p; reflexivity protected definition ap_functor_inr [reducible] {x x' : TR} (p : x = x') : ap (pushout.functor f g f' g' tl bl tr fh gh) (ap inr p) = ap inr (ap tr p) := by cases p; reflexivity variables [ietl : is_equiv tl] [iebl : is_equiv bl] [ietr : is_equiv tr] include ietl iebl ietr open equiv is_equiv arrow protected definition is_equiv_functor [instance] : is_equiv (pushout.functor f g f' g' tl bl tr fh gh) := adjointify (pushout.functor f g f' g' tl bl tr fh gh) (pushout.functor f' g' f g tl⁻¹ bl⁻¹ tr⁻¹ (inv_commute_of_commute tl bl f f' fh) (inv_commute_of_commute tl tr g g' gh)) abstract begin intro x', induction x' with a' b' z', { apply ap inl, apply right_inv }, { apply ap inr, apply right_inv }, { apply eq_pathover, rewrite [ap_id,ap_compose' (pushout.functor f g f' g' tl bl tr fh gh)], krewrite elim_glue, rewrite [ap_inv,ap_con,ap_inv], krewrite [pushout.ap_functor_inr], rewrite ap_con, krewrite [pushout.ap_functor_inl,elim_glue], apply transpose, apply move_top_of_right, apply move_top_of_left', krewrite [-(ap_inv inl),-ap_con,-(ap_inv inr),-ap_con], apply move_top_of_right, apply move_top_of_left', krewrite [-ap_con,-(ap_inv inl),-ap_con], rewrite ap_bot_inv_commute_of_commute, apply eq_hconcat (ap02 inl (is_equiv_functor_lemma₁ (right_inv bl (f' z')) (ap f' (right_inv tl z')⁻¹) (fh (tl⁻¹ z'))⁻¹)), rewrite [ap_inv f',inv_inv], rewrite ap_bot_inv_commute_of_commute, refine hconcat_eq _ (ap02 inr (is_equiv_functor_lemma₁ (right_inv tr (g' z')) (ap g' (right_inv tl z')⁻¹) (gh (tl⁻¹ z'))⁻¹))⁻¹, rewrite [ap_inv g',inv_inv], apply pushout.glue_square } end end abstract begin intro x, induction x with a b z, { apply ap inl, apply left_inv }, { apply ap inr, apply left_inv }, { apply eq_pathover, rewrite [ap_id,ap_compose' (pushout.functor f' g' f g tl⁻¹ bl⁻¹ tr⁻¹ _ _) (pushout.functor f g f' g' tl bl tr _ _)], krewrite elim_glue, rewrite [ap_inv,ap_con,ap_inv], krewrite [pushout.ap_functor_inr], rewrite ap_con, krewrite [pushout.ap_functor_inl,elim_glue], apply transpose, apply move_top_of_right, apply move_top_of_left', krewrite [-(ap_inv inl),-ap_con,-(ap_inv inr),-ap_con], apply move_top_of_right, apply move_top_of_left', krewrite [-ap_con,-(ap_inv inl),-ap_con], rewrite inv_commute_of_commute_top, apply eq_hconcat (ap02 inl (is_equiv_functor_lemma₂ (ap bl⁻¹ (fh z))⁻¹ (left_inv bl (f z)) (ap f (left_inv tl z)⁻¹))), rewrite [ap_inv f,inv_inv], rewrite inv_commute_of_commute_top, refine hconcat_eq _ (ap02 inr (is_equiv_functor_lemma₂ (ap tr⁻¹ (gh z))⁻¹ (left_inv tr (g z)) (ap g (left_inv tl z)⁻¹)))⁻¹, rewrite [ap_inv g,inv_inv], apply pushout.glue_square } end end end /- version giving the equivalence -/ section variables {TL BL TR : Type} (f : TL → BL) (g : TL → TR) {TL' BL' TR' : Type} (f' : TL' → BL') (g' : TL' → TR') (tl : TL ≃ TL') (bl : BL ≃ BL') (tr : TR ≃ TR') (fh : bl ∘ f ~ f' ∘ tl) (gh : tr ∘ g ~ g' ∘ tl) include fh gh protected definition equiv : pushout f g ≃ pushout f' g' := equiv.mk (pushout.functor f g f' g' tl bl tr fh gh) _ end end pushout