/- Copyright (c) 2014 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer, Floris van Doorn Ported from Coq HoTT -/ import arity .eq .bool .unit .sigma .nat.basic prop_trunc open is_trunc eq prod sigma nat equiv option is_equiv bool unit algebra sigma.ops structure pointed [class] (A : Type) := (point : A) structure pType := (carrier : Type) (Point : carrier) notation `Type*` := pType section universe variable u structure ptrunctype (n : trunc_index) extends trunctype.{u} n, pType.{u} end notation n `-Type*` := ptrunctype n abbreviation pSet [parsing_only] := 0-Type* notation `Set*` := pSet namespace pointed attribute pType.carrier [coercion] variables {A B : Type} definition pt [reducible] [unfold 2] [H : pointed A] := point A definition Point [reducible] [unfold 1] (A : Type*) := pType.Point A abbreviation carrier [unfold 1] (A : Type*) := pType.carrier A protected definition Mk [constructor] {A : Type} (a : A) := pType.mk A a protected definition MK [constructor] (A : Type) (a : A) := pType.mk A a protected definition mk' [constructor] (A : Type) [H : pointed A] : Type* := pType.mk A (point A) definition pointed_carrier [instance] [constructor] (A : Type*) : pointed A := pointed.mk (Point A) -- Any contractible type is pointed definition pointed_of_is_contr [instance] [priority 800] [constructor] (A : Type) [H : is_contr A] : pointed A := pointed.mk !center -- A pi type with a pointed target is pointed definition pointed_pi [instance] [constructor] (P : A → Type) [H : Πx, pointed (P x)] : pointed (Πx, P x) := pointed.mk (λx, pt) -- A sigma type of pointed components is pointed definition pointed_sigma [instance] [constructor] (P : A → Type) [G : pointed A] [H : pointed (P pt)] : pointed (Σx, P x) := pointed.mk ⟨pt,pt⟩ definition pointed_prod [instance] [constructor] (A B : Type) [H1 : pointed A] [H2 : pointed B] : pointed (A × B) := pointed.mk (pt,pt) definition pointed_loop [instance] [constructor] (a : A) : pointed (a = a) := pointed.mk idp definition pointed_bool [instance] [constructor] : pointed bool := pointed.mk ff definition pprod [constructor] (A B : Type*) : Type* := pointed.mk' (A × B) infixr ` ×* `:35 := pprod definition pointed_fun_closed [constructor] (f : A → B) [H : pointed A] : pointed B := pointed.mk (f pt) definition ploop_space [reducible] [constructor] (A : Type*) : Type* := pointed.mk' (point A = point A) definition iterated_ploop_space [reducible] : ℕ → Type* → Type* | iterated_ploop_space 0 X := X | iterated_ploop_space (n+1) X := ploop_space (iterated_ploop_space n X) prefix `Ω`:(max+5) := ploop_space notation `Ω[`:95 n:0 `] `:0 A:95 := iterated_ploop_space n A definition iterated_ploop_space_zero [unfold_full] (A : Type*) : Ω[0] A = A := rfl definition iterated_ploop_space_succ [unfold_full] (k : ℕ) (A : Type*) : Ω[succ k] A = Ω Ω[k] A := rfl definition rfln [constructor] [reducible] {n : ℕ} {A : Type*} : Ω[n] A := pt definition refln [constructor] [reducible] (n : ℕ) (A : Type*) : Ω[n] A := pt definition refln_eq_refl (A : Type*) (n : ℕ) : rfln = rfl :> Ω[succ n] A := rfl definition iterated_loop_space [unfold 3] (A : Type) [H : pointed A] (n : ℕ) : Type := Ω[n] (pointed.mk' A) definition loop_mul {k : ℕ} {A : Type*} (mul : A → A → A) : Ω[k] A → Ω[k] A → Ω[k] A := begin cases k with k, exact mul, exact concat end definition pType_eq {A B : Type*} (f : A ≃ B) (p : f pt = pt) : A = B := begin cases A with A a, cases B with B b, esimp at *, fapply apd011 @pType.mk, { apply ua f}, { rewrite [cast_ua,p]}, end definition pType_eq_elim {A B : Type*} (p : A = B :> Type*) : Σ(p : carrier A = carrier B :> Type), cast p pt = pt := by induction p; exact ⟨idp, idp⟩ protected definition pType.sigma_char.{u} : pType.{u} ≃ Σ(X : Type.{u}), X := begin fapply equiv.MK, { intro x, induction x with X x, exact ⟨X, x⟩}, { intro x, induction x with X x, exact pointed.MK X x}, { intro x, induction x with X x, reflexivity}, { intro x, induction x with X x, reflexivity}, end definition add_point [constructor] (A : Type) : Type* := pointed.Mk (none : option A) postfix `₊`:(max+1) := add_point -- the inclusion A → A₊ is called "some", the extra point "pt" or "none" ("@none A") end pointed open pointed protected definition ptrunctype.mk' [constructor] (n : trunc_index) (A : Type) [pointed A] [is_trunc n A] : n-Type* := ptrunctype.mk A _ pt protected definition pSet.mk [constructor] := @ptrunctype.mk (-1.+1) protected definition pSet.mk' [constructor] := ptrunctype.mk' (-1.+1) definition ptrunctype_of_trunctype [constructor] {n : trunc_index} (A : n-Type) (a : A) : n-Type* := ptrunctype.mk A _ a definition ptrunctype_of_pType [constructor] {n : trunc_index} (A : Type*) (H : is_trunc n A) : n-Type* := ptrunctype.mk A _ pt definition pSet_of_Set [constructor] (A : Set) (a : A) : Set* := ptrunctype.mk A _ a definition pSet_of_pType [constructor] (A : Type*) (H : is_set A) : Set* := ptrunctype.mk A _ pt attribute pType._trans_to_carrier ptrunctype.to_pType ptrunctype.to_trunctype [unfold 2] definition ptrunctype_eq {n : trunc_index} {A B : n-Type*} (p : A = B :> Type) (q : cast p pt = pt) : A = B := begin induction A with A HA a, induction B with B HB b, esimp at *, induction p, induction q, esimp, refine ap010 (ptrunctype.mk A) _ a, exact !is_prop.elim end definition ptrunctype_eq_of_pType_eq {n : trunc_index} {A B : n-Type*} (p : A = B :> Type*) : A = B := begin cases pType_eq_elim p with q r, exact ptrunctype_eq q r end namespace pointed definition pbool [constructor] : Set* := pSet.mk' bool definition punit [constructor] : Set* := pSet.mk' unit /- properties of iterated loop space -/ variable (A : Type*) definition loop_space_succ_eq_in (n : ℕ) : Ω[succ n] A = Ω[n] (Ω A) := begin induction n with n IH, { reflexivity}, { exact ap ploop_space IH} end definition loop_space_add (n m : ℕ) : Ω[n] (Ω[m] A) = Ω[m+n] (A) := begin induction n with n IH, { reflexivity}, { exact ap ploop_space IH} end definition loop_space_succ_eq_out (n : ℕ) : Ω[succ n] A = Ω(Ω[n] A) := idp variable {A} /- the equality [loop_space_succ_eq_in] preserves concatenation -/ theorem loop_space_succ_eq_in_concat {n : ℕ} (p q : Ω[succ (succ n)] A) : transport carrier (ap ploop_space (loop_space_succ_eq_in A n)) (p ⬝ q) = transport carrier (ap ploop_space (loop_space_succ_eq_in A n)) p ⬝ transport carrier (ap ploop_space (loop_space_succ_eq_in A n)) q := begin rewrite [-+tr_compose, ↑function.compose], rewrite [+@transport_eq_FlFr_D _ _ _ _ Point Point, +con.assoc], apply whisker_left, rewrite [-+con.assoc], apply whisker_right, rewrite [con_inv_cancel_right, ▸*, -ap_con] end definition loop_space_loop_irrel (p : point A = point A) : Ω(pointed.Mk p) = Ω[2] A := begin intros, fapply pType_eq, { esimp, transitivity _, apply eq_equiv_fn_eq_of_equiv (equiv_eq_closed_right _ p⁻¹), esimp, apply eq_equiv_eq_closed, apply con.right_inv, apply con.right_inv}, { esimp, apply con.left_inv} end definition iterated_loop_space_loop_irrel (n : ℕ) (p : point A = point A) : Ω[succ n](pointed.Mk p) = Ω[succ (succ n)] A :> pType := calc Ω[succ n](pointed.Mk p) = Ω[n](Ω (pointed.Mk p)) : loop_space_succ_eq_in ... = Ω[n] (Ω[2] A) : loop_space_loop_irrel ... = Ω[2+n] A : loop_space_add ... = Ω[n+2] A : by rewrite [algebra.add.comm] end pointed open pointed /- pointed maps -/ structure pmap (A B : Type*) := (to_fun : A → B) (resp_pt : to_fun (Point A) = Point B) namespace pointed abbreviation respect_pt [unfold 3] := @pmap.resp_pt notation `map₊` := pmap infix ` →* `:30 := pmap attribute pmap.to_fun [coercion] end pointed open pointed /- pointed homotopies -/ structure phomotopy {A B : Type*} (f g : A →* B) := (homotopy : f ~ g) (homotopy_pt : homotopy pt ⬝ respect_pt g = respect_pt f) namespace pointed variables {A B C D : Type*} {f g h : A →* B} infix ` ~* `:50 := phomotopy abbreviation to_homotopy_pt [unfold 5] := @phomotopy.homotopy_pt abbreviation to_homotopy [coercion] [unfold 5] (p : f ~* g) : Πa, f a = g a := phomotopy.homotopy p /- categorical properties of pointed maps -/ definition pid [constructor] [refl] (A : Type*) : A →* A := pmap.mk id idp definition pcompose [constructor] [trans] (g : B →* C) (f : A →* B) : A →* C := pmap.mk (λa, g (f a)) (ap g (respect_pt f) ⬝ respect_pt g) infixr ` ∘* `:60 := pcompose definition passoc (h : C →* D) (g : B →* C) (f : A →* B) : (h ∘* g) ∘* f ~* h ∘* (g ∘* f) := begin fconstructor, intro a, reflexivity, cases A, cases B, cases C, cases D, cases f with f pf, cases g with g pg, cases h with h ph, esimp at *, induction pf, induction pg, induction ph, reflexivity end definition pid_comp (f : A →* B) : pid B ∘* f ~* f := begin fconstructor, { intro a, reflexivity}, { reflexivity} end definition comp_pid (f : A →* B) : f ∘* pid A ~* f := begin fconstructor, { intro a, reflexivity}, { reflexivity} end /- equivalences and equalities -/ definition pmap_eq (r : Πa, f a = g a) (s : respect_pt f = (r pt) ⬝ respect_pt g) : f = g := begin cases f with f p, cases g with g q, esimp at *, fapply apo011 pmap.mk, { exact eq_of_homotopy r}, { apply concato_eq, apply pathover_eq_Fl, apply inv_con_eq_of_eq_con, rewrite [ap_eq_ap10,↑ap10,apd10_eq_of_homotopy,s]} end definition pmap_equiv_left (A : Type) (B : Type*) : A₊ →* B ≃ (A → B) := begin fapply equiv.MK, { intro f a, cases f with f p, exact f (some a)}, { intro f, fconstructor, intro a, cases a, exact pt, exact f a, reflexivity}, { intro f, reflexivity}, { intro f, cases f with f p, esimp, fapply pmap_eq, { intro a, cases a; all_goals (esimp at *), exact p⁻¹}, { esimp, exact !con.left_inv⁻¹}}, end definition pmap_equiv_right (A : Type*) (B : Type) : (Σ(b : B), A →* (pointed.Mk b)) ≃ (A → B) := begin fapply equiv.MK, { intro u a, exact pmap.to_fun u.2 a}, { intro f, refine ⟨f pt, _⟩, fapply pmap.mk, intro a, esimp, exact f a, reflexivity}, { intro f, reflexivity}, { intro u, cases u with b f, cases f with f p, esimp at *, induction p, reflexivity} end definition pmap_bool_equiv (B : Type*) : (pbool →* B) ≃ B := begin fapply equiv.MK, { intro f, cases f with f p, exact f tt}, { intro b, fconstructor, intro u, cases u, exact pt, exact b, reflexivity}, { intro b, reflexivity}, { intro f, cases f with f p, esimp, fapply pmap_eq, { intro a, cases a; all_goals (esimp at *), exact p⁻¹}, { esimp, exact !con.left_inv⁻¹}}, end -- The constant pointed map between any two types definition pconst [constructor] (A B : Type*) : A →* B := pmap.mk (λ a, Point B) idp -- the pointed type of pointed maps definition ppmap [constructor] (A B : Type*) : Type* := pType.mk (A →* B) (pconst A B) /- instances of pointed maps -/ definition ap1 [constructor] (f : A →* B) : Ω A →* Ω B := begin fconstructor, { intro p, exact !respect_pt⁻¹ ⬝ ap f p ⬝ !respect_pt}, { esimp, apply con.left_inv} end definition apn (n : ℕ) (f : map₊ A B) : Ω[n] A →* Ω[n] B := begin induction n with n IH, { exact f}, { esimp [iterated_ploop_space], exact ap1 IH} end prefix `Ω→`:(max+5) := ap1 notation `Ω→[`:95 n:0 `] `:0 f:95 := apn n f definition apn_zero (f : map₊ A B) : Ω→[0] f = f := idp definition apn_succ (n : ℕ) (f : map₊ A B) : Ω→[n + 1] f = ap1 (Ω→[n] f) := idp definition pcast [constructor] {A B : Type*} (p : A = B) : A →* B := proof pmap.mk (cast (ap pType.carrier p)) (by induction p; reflexivity) qed definition pinverse [constructor] {X : Type*} : Ω X →* Ω X := pmap.mk eq.inverse idp /- categorical properties of pointed homotopies -/ protected definition phomotopy.refl [constructor] [refl] (f : A →* B) : f ~* f := begin fconstructor, { intro a, exact idp}, { apply idp_con} end protected definition phomotopy.rfl [constructor] {A B : Type*} {f : A →* B} : f ~* f := phomotopy.refl f protected definition phomotopy.trans [constructor] [trans] (p : f ~* g) (q : g ~* h) : f ~* h := phomotopy.mk (λa, p a ⬝ q a) abstract begin induction f, induction g, induction p with p p', induction q with q q', esimp at *, induction p', induction q', esimp, apply con.assoc end end protected definition phomotopy.symm [constructor] [symm] (p : f ~* g) : g ~* f := phomotopy.mk (λa, (p a)⁻¹) abstract begin induction f, induction p with p p', esimp at *, induction p', esimp, apply inv_con_cancel_left end end infix ` ⬝* `:75 := phomotopy.trans postfix `⁻¹*`:(max+1) := phomotopy.symm /- properties about the given pointed maps -/ definition is_equiv_ap1 {A B : Type*} (f : A →* B) [is_equiv f] : is_equiv (ap1 f) := begin induction B with B b, induction f with f pf, esimp at *, cases pf, esimp, apply is_equiv.homotopy_closed (ap f), intro p, exact !idp_con⁻¹ end definition is_equiv_apn {A B : Type*} (n : ℕ) (f : A →* B) [H : is_equiv f] : is_equiv (apn n f) := begin induction n with n IH, { exact H}, { exact is_equiv_ap1 (apn n f)} end definition ap1_id [constructor] {A : Type*} : ap1 (pid A) ~* pid (Ω A) := begin fapply phomotopy.mk, { intro p, esimp, refine !idp_con ⬝ !ap_id}, { reflexivity} end definition ap1_pinverse {A : Type*} : ap1 (@pinverse A) ~* @pinverse (Ω A) := begin fapply phomotopy.mk, { intro p, esimp, refine !idp_con ⬝ _, exact !inv_eq_inv2⁻¹ }, { reflexivity} end definition ap1_compose (g : B →* C) (f : A →* B) : ap1 (g ∘* f) ~* ap1 g ∘* ap1 f := begin induction B, induction C, induction g with g pg, induction f with f pf, esimp at *, induction pg, induction pf, fconstructor, { intro p, esimp, apply whisker_left, exact ap_compose g f p ⬝ ap (ap g) !idp_con⁻¹}, { reflexivity} end definition ap1_compose_pinverse (f : A →* B) : ap1 f ∘* pinverse ~* pinverse ∘* ap1 f := begin fconstructor, { intro p, esimp, refine !con.assoc ⬝ _ ⬝ !con_inv⁻¹, apply whisker_left, refine whisker_right !ap_inv _ ⬝ _ ⬝ !con_inv⁻¹, apply whisker_left, exact !inv_inv⁻¹}, { induction B with B b, induction f with f pf, esimp at *, induction pf, reflexivity}, end theorem ap1_con (f : A →* B) (p q : Ω A) : ap1 f (p ⬝ q) = ap1 f p ⬝ ap1 f q := begin rewrite [▸*,ap_con, +con.assoc, con_inv_cancel_left], repeat apply whisker_left end theorem ap1_inv (f : A →* B) (p : Ω A) : ap1 f p⁻¹ = (ap1 f p)⁻¹ := begin rewrite [▸*,ap_inv, +con_inv, inv_inv, +con.assoc], repeat apply whisker_left end definition pcast_ap_loop_space {A B : Type*} (p : A = B) : pcast (ap ploop_space p) ~* Ω→ (pcast p) := begin induction p, exact !ap1_id⁻¹* end definition pinverse_con [constructor] {X : Type*} (p q : Ω X) : pinverse (p ⬝ q) = pinverse q ⬝ pinverse p := !con_inv definition pinverse_inv [constructor] {X : Type*} (p : Ω X) : pinverse p⁻¹ = (pinverse p)⁻¹ := idp /- more on pointed homotopies -/ definition phomotopy_of_eq [constructor] {A B : Type*} {f g : A →* B} (p : f = g) : f ~* g := phomotopy.mk (ap010 pmap.to_fun p) begin induction p, apply idp_con end definition pconcat_eq [constructor] {A B : Type*} {f g h : A →* B} (p : f ~* g) (q : g = h) : f ~* h := p ⬝* phomotopy_of_eq q definition eq_pconcat [constructor] {A B : Type*} {f g h : A →* B} (p : f = g) (q : g ~* h) : f ~* h := phomotopy_of_eq p ⬝* q definition pwhisker_left [constructor] (h : B →* C) (p : f ~* g) : h ∘* f ~* h ∘* g := phomotopy.mk (λa, ap h (p a)) abstract begin induction A, induction B, induction C, induction f with f pf, induction g with g pg, induction h with h ph, induction p with p p', esimp at *, induction ph, induction pg, induction p', reflexivity end end definition pwhisker_right [constructor] (h : C →* A) (p : f ~* g) : f ∘* h ~* g ∘* h := phomotopy.mk (λa, p (h a)) abstract begin induction A, induction B, induction C, induction f with f pf, induction g with g pg, induction h with h ph, induction p with p p', esimp at *, induction ph, induction pg, induction p', esimp, exact !idp_con⁻¹ end end definition pconcat2 [constructor] {A B C : Type*} {h i : B →* C} {f g : A →* B} (q : h ~* i) (p : f ~* g) : h ∘* f ~* i ∘* g := pwhisker_left _ p ⬝* pwhisker_right _ q definition eq_of_phomotopy (p : f ~* g) : f = g := begin fapply pmap_eq, { intro a, exact p a}, { exact !to_homotopy_pt⁻¹} end definition pap {A B C D : Type*} (F : (A →* B) → (C →* D)) {f g : A →* B} (p : f ~* g) : F f ~* F g := phomotopy.mk (ap010 F (eq_of_phomotopy p)) begin cases eq_of_phomotopy p, apply idp_con end -- TODO: give proof without using function extensionality (commented out part is a start) definition ap1_phomotopy {A B : Type*} {f g : A →* B} (p : f ~* g) : ap1 f ~* ap1 g := pap ap1 p /- begin induction p with p q, induction f with f pf, induction g with g pg, induction B with B b, esimp at *, induction q, induction pg, fapply phomotopy.mk, { intro l, esimp, refine _ ⬝ !idp_con⁻¹, refine !con.assoc ⬝ _, apply inv_con_eq_of_eq_con, apply ap_con_eq_con_ap}, { esimp, } end -/ definition apn_compose (n : ℕ) (g : B →* C) (f : A →* B) : apn n (g ∘* f) ~* apn n g ∘* apn n f := begin induction n with n IH, { reflexivity}, { refine ap1_phomotopy IH ⬝* _, apply ap1_compose} end definition apn_pid [constructor] {A : Type*} (n : ℕ) : apn n (pid A) ~* pid (Ω[n] A) := begin induction n with n IH, { reflexivity}, { exact ap1_phomotopy IH ⬝* ap1_id} end theorem apn_con (n : ℕ) (f : A →* B) (p q : Ω[n+1] A) : apn (n+1) f (p ⬝ q) = apn (n+1) f p ⬝ apn (n+1) f q := by rewrite [+apn_succ, ap1_con] theorem apn_inv (n : ℕ) (f : A →* B) (p : Ω[n+1] A) : apn (n+1) f p⁻¹ = (apn (n+1) f p)⁻¹ := by rewrite [+apn_succ, ap1_inv] infix ` ⬝*p `:75 := pconcat_eq infix ` ⬝p* `:75 := eq_pconcat end pointed