/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Floris van Doorn Theorems about pathovers -/ import types.sigma arity open eq equiv is_equiv equiv.ops namespace cubical variables {A A' : Type} {B : A → Type} {C : Πa, B a → Type} {a a₂ a₃ a₄ : A} {p : a = a₂} {p₂ : a₂ = a₃} {p₃ : a₃ = a₄} {b : B a} {b₂ : B a₂} {b₃ : B a₃} {b₄ : B a₄} {c : C a b} {c₂ : C a₂ b₂} {u v w : Σa, B a} inductive pathover (B : A → Type) (b : B a) : Π{a₂ : A} (p : a = a₂) (b₂ : B a₂), Type := idpatho : pathover B b (refl a) b notation b `=[`:50 p:0 `]`:0 b₂:50 := pathover _ b p b₂ definition idpo [reducible] [constructor] {b : B a} : b =[refl a] b := pathover.idpatho b /- equivalences with equality using transport -/ definition pathover_of_transport_eq (r : p ▸ b = b₂) : b =[p] b₂ := by cases p; cases r; exact idpo definition pathover_of_eq_transport (r : b = p⁻¹ ▸ b₂) : b =[p] b₂ := by cases p; cases r; exact idpo definition transport_eq_of_pathover (r : b =[p] b₂) : p ▸ b = b₂ := by cases r; exact idp definition eq_transport_of_pathover (r : b =[p] b₂) : b = p⁻¹ ▸ b₂ := by cases r; exact idp definition pathover_equiv_transport_eq (p : a = a₂) (b : B a) (b₂ : B a₂) : (b =[p] b₂) ≃ (p ▸ b = b₂) := begin fapply equiv.MK, { exact transport_eq_of_pathover}, { exact pathover_of_transport_eq}, { intro r, cases p, cases r, apply idp}, { intro r, cases r, apply idp}, end definition pathover_equiv_eq_transport (p : a = a₂) (b : B a) (b₂ : B a₂) : (b =[p] b₂) ≃ (b = p⁻¹ ▸ b₂) := begin fapply equiv.MK, { exact eq_transport_of_pathover}, { exact pathover_of_eq_transport}, { intro r, cases p, cases r, apply idp}, { intro r, cases r, apply idp}, end definition pathover_transport (p : a = a₂) (b : B a) : b =[p] p ▸ b := pathover_of_transport_eq idp definition transport_pathover (p : a = a₂) (b : B a) : p⁻¹ ▸ b =[p] b := pathover_of_eq_transport idp definition concato (r : b =[p] b₂) (r₂ : b₂ =[p₂] b₃) : b =[p ⬝ p₂] b₃ := pathover.rec_on r₂ (pathover.rec_on r idpo) definition inverseo (r : b =[p] b₂) : b₂ =[p⁻¹] b := pathover.rec_on r idpo definition apdo (f : Πa, B a) (p : a = a₂) : f a =[p] f a₂ := eq.rec_on p idpo infix `⬝o`:75 := concato postfix `⁻¹ᵒ`:(max+10) := inverseo /- Some of the theorems analogous to theorems for = in init.path -/ definition cono_idpo (r : b =[p] b₂) : r ⬝o idpo =[con_idp p] r := pathover.rec_on r idpo definition idpo_cono (r : b =[p] b₂) : idpo ⬝o r =[idp_con p] r := pathover.rec_on r idpo definition cono.assoc' (r : b =[p] b₂) (r₂ : b₂ =[p₂] b₃) (r₃ : b₃ =[p₃] b₄) : r ⬝o (r₂ ⬝o r₃) =[!con.assoc'] (r ⬝o r₂) ⬝o r₃ := pathover.rec_on r₃ (pathover.rec_on r₂ (pathover.rec_on r idpo)) definition cono.assoc (r : b =[p] b₂) (r₂ : b₂ =[p₂] b₃) (r₃ : b₃ =[p₃] b₄) : (r ⬝o r₂) ⬝o r₃ =[!con.assoc] r ⬝o (r₂ ⬝o r₃) := pathover.rec_on r₃ (pathover.rec_on r₂ (pathover.rec_on r idpo)) -- the left inverse law. definition cono.right_inv (r : b =[p] b₂) : r ⬝o r⁻¹ᵒ =[!con.right_inv] idpo := pathover.rec_on r idpo -- the right inverse law. definition cono.left_inv (r : b =[p] b₂) : r⁻¹ᵒ ⬝o r =[!con.left_inv] idpo := pathover.rec_on r idpo /- Some of the theorems analogous to theorems for transport in init.path -/ --set_option pp.notation false definition pathover_constant (p : a = a₂) (a' a₂' : A') : a' =[p] a₂' ≃ a' = a₂' := begin fapply equiv.MK, { intro r, cases r, exact idp}, { intro r, cases p, cases r, exact idpo}, { intro r, cases p, cases r, exact idp}, { intro r, cases r, exact idp}, end definition pathover_idp (b : B a) (b' : B a) : b =[idpath a] b' ≃ b = b' := pathover_equiv_transport_eq idp b b' definition eq_of_pathover_idp {b' : B a} (q : b =[idpath a] b') : b = b' := transport_eq_of_pathover q definition pathover_idp_of_eq {b' : B a} (q : b = b') : b =[idpath a] b' := pathover_of_transport_eq q definition idp_rec_on [recursor] {P : Π⦃b₂ : B a⦄, b =[idpath a] b₂ → Type} {b₂ : B a} (r : b =[idpath a] b₂) (H : P idpo) : P r := have H2 : P (pathover_idp_of_eq (eq_of_pathover_idp r)), from eq.rec_on (eq_of_pathover_idp r) H, left_inv !pathover_idp r ▸ H2 --pathover with fibration B' ∘ f definition pathover_compose (B' : A' → Type) (f : A → A') (p : a = a₂) (b : B' (f a)) (b₂ : B' (f a₂)) : b =[p] b₂ ≃ b =[ap f p] b₂ := begin fapply equiv.MK, { intro r, cases r, exact idpo}, { intro r, cases p, apply (idp_rec_on r), apply idpo}, { intro r, cases p, esimp [function.compose,function.id], apply (idp_rec_on r), apply idp}, { intro r, cases r, exact idp}, end definition apdo_con (f : Πa, B a) (p : a = a₂) (q : a₂ = a₃) : apdo f (p ⬝ q) = apdo f p ⬝o apdo f q := by cases p; cases q; exact idp open sigma sigma.ops namespace sigma /- pathovers used for sigma types -/ definition dpair_eq_dpair (p : a = a₂) (q : b =[p] b₂) : ⟨a, b⟩ = ⟨a₂, b₂⟩ := by cases q; apply idp definition sigma_eq (p : u.1 = v.1) (q : u.2 =[p] v.2) : u = v := by cases u; cases v; apply (dpair_eq_dpair p q) /- Projections of paths from a total space -/ definition pathover_pr2 (p : u = v) : u.2 =[p..1] v.2 := by cases p; apply idpo postfix `..2o`:(max+1) := pathover_pr2 --superfluous notation, but useful if you want an 'o' on both projections postfix [parsing-only] `..1o`:(max+1) := eq_pr1 private definition dpair_sigma_eq (p : u.1 = v.1) (q : u.2 =[p] v.2) : ⟨(sigma_eq p q)..1, (sigma_eq p q)..2o⟩ = ⟨p, q⟩ := by cases u; cases v; cases q; apply idp definition sigma_eq_pr1 (p : u.1 = v.1) (q : u.2 =[p] v.2) : (sigma_eq p q)..1 = p := (dpair_sigma_eq p q)..1 definition sigma_eq_pr2 (p : u.1 = v.1) (q : u.2 =[p] v.2) : (sigma_eq p q)..2o =[sigma_eq_pr1 p q] q := (dpair_sigma_eq p q)..2o definition sigma_eq_eta (p : u = v) : sigma_eq (p..1) (p..2o) = p := by cases p; cases u; apply idp /- the uncurried version of sigma_eq. We will prove that this is an equivalence -/ definition sigma_eq_uncurried : Π (pq : Σ(p : u.1 = v.1), u.2 =[p] v.2), u = v | sigma_eq_uncurried ⟨pq₁, pq₂⟩ := sigma_eq pq₁ pq₂ definition dpair_sigma_eq_uncurried : Π (pq : Σ(p : u.1 = v.1), u.2 =[p] v.2), ⟨(sigma_eq_uncurried pq)..1, (sigma_eq_uncurried pq)..2o⟩ = pq | dpair_sigma_eq_uncurried ⟨pq₁, pq₂⟩ := dpair_sigma_eq pq₁ pq₂ definition sigma_eq_pr1_uncurried (pq : Σ(p : u.1 = v.1), u.2 =[p] v.2) : (sigma_eq_uncurried pq)..1 = pq.1 := (dpair_sigma_eq_uncurried pq)..1 definition sigma_eq_pr2_uncurried (pq : Σ(p : u.1 = v.1), u.2 =[p] v.2) : (sigma_eq_uncurried pq)..2o =[sigma_eq_pr1_uncurried pq] pq.2 := (dpair_sigma_eq_uncurried pq)..2o definition sigma_eq_eta_uncurried (p : u = v) : sigma_eq_uncurried (sigma.mk p..1 p..2o) = p := sigma_eq_eta p definition is_equiv_sigma_eq [instance] (u v : Σa, B a) : is_equiv (@sigma_eq_uncurried A B u v) := adjointify sigma_eq_uncurried (λp, ⟨p..1, p..2o⟩) sigma_eq_eta_uncurried dpair_sigma_eq_uncurried definition equiv_sigma_eq (u v : Σa, B a) : (Σ(p : u.1 = v.1), u.2 =[p] v.2) ≃ (u = v) := equiv.mk sigma_eq_uncurried !is_equiv_sigma_eq end sigma definition apd011o (f : Πa, B a → A') (Ha : a = a₂) (Hb : b =[Ha] b₂) : f a b = f a₂ b₂ := by cases Hb; exact idp definition apd0111o (f : Πa b, C a b → A') (Ha : a = a₂) (Hb : b =[Ha] b₂) (Hc : c =[apd011o C Ha Hb] c₂) : f a b c = f a₂ b₂ c₂ := by cases Hb; apply (idp_rec_on Hc); apply idp namespace pi --the most 'natural' version here needs a notion of "path over a pathover" definition pi_pathover {f : Πb, C a b} {g : Πb₂, C a₂ b₂} (r : Π(b : B a) (b₂ : B a₂) (q : b =[p] b₂), f b =[apd011o C p q] g b₂) : f =[p] g := begin cases p, apply pathover_idp_of_eq, apply eq_of_homotopy, intro b, apply eq_of_pathover_idp, apply r end definition pi_pathover' {C : (Σa, B a) → Type} {f : Πb, C ⟨a, b⟩} {g : Πb₂, C ⟨a₂, b₂⟩} (r : Π(b : B a) (b₂ : B a₂) (q : b =[p] b₂), f b =[sigma.dpair_eq_dpair p q] g b₂) : f =[p] g := begin cases p, apply pathover_idp_of_eq, apply eq_of_homotopy, intro b, apply (@eq_of_pathover_idp _ C), exact (r b b (pathover.idpatho b)), end definition ap11o {f : Πb, C a b} {g : Πb₂, C a₂ b₂} (r : f =[p] g) {b : B a} {b₂ : B a₂} (q : b =[p] b₂) : f b =[apd011o C p q] g b₂ := by cases r; apply (idp_rec_on q); exact idpo definition ap10o {f : Πb, C a b} {g : Πb₂, C a₂ b₂} (r : f =[p] g) {b : B a} : f b =[apd011o C p !pathover_transport] g (p ▸ b) := by cases r; exact idpo -- definition equiv_pi_pathover' (f : Πb, C a b) (g : Πb₂, C a₂ b₂) : -- (f =[p] g) ≃ (Π(b : B a), f b =[apd011o C p !pathover_transport] g (p ▸ b)) := -- begin -- fapply equiv.MK, -- { exact ap10o}, -- { exact pi_pathover'}, -- { cases p, exact sorry}, -- { intro r, cases r, }, -- end -- definition equiv_pi_pathover (f : Πb, C a b) (g : Πb₂, C a₂ b₂) : -- (f =[p] g) ≃ (Π(b : B a) (b₂ : B a₂) (q : b =[p] b₂), f b =[apd011o C p q] g b₂) := -- begin -- fapply equiv.MK, -- { exact ap11o}, -- { exact pi_pathover}, -- { cases p, exact sorry}, -- { intro r, cases r, }, -- end end pi end cubical