/* Copyright (c) 2015 Daniel Selsam. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Daniel Selsam */ #include "kernel/abstract.h" #include "kernel/expr_maps.h" #include "kernel/instantiate.h" #include "library/constants.h" #include "library/expr_lt.h" #include "library/class_instance_resolution.h" #include "library/relation_manager.h" #include "library/blast/expr.h" #include "library/blast/blast_exception.h" #include "library/blast/blast.h" #include "library/blast/simplifier.h" #include "library/simplifier/simp_rule_set.h" #include "library/simplifier/ceqv.h" #include "library/app_builder.h" #include "library/num.h" #include "library/norm_num.h" #include "util/flet.h" #include "util/pair.h" #include "util/sexpr/option_declarations.h" #include #include #ifndef LEAN_DEFAULT_SIMPLIFY_MAX_STEPS #define LEAN_DEFAULT_SIMPLIFY_MAX_STEPS 1000 #endif #ifndef LEAN_DEFAULT_SIMPLIFY_TOP_DOWN #define LEAN_DEFAULT_SIMPLIFY_TOP_DOWN false #endif #ifndef LEAN_DEFAULT_SIMPLIFY_EXHAUSTIVE #define LEAN_DEFAULT_SIMPLIFY_EXHAUSTIVE true #endif #ifndef LEAN_DEFAULT_SIMPLIFY_MEMOIZE #define LEAN_DEFAULT_SIMPLIFY_MEMOIZE true #endif #ifndef LEAN_DEFAULT_SIMPLIFY_CONTEXTUAL #define LEAN_DEFAULT_SIMPLIFY_CONTEXTUAL true #endif #ifndef LEAN_DEFAULT_SIMPLIFY_EXPAND_MACROS #define LEAN_DEFAULT_SIMPLIFY_EXPAND_MACROS false #endif #ifndef LEAN_DEFAULT_SIMPLIFY_TRACE #define LEAN_DEFAULT_SIMPLIFY_TRACE false #endif #ifndef LEAN_DEFAULT_SIMPLIFY_FUSE #define LEAN_DEFAULT_SIMPLIFY_FUSE false #endif #ifndef LEAN_DEFAULT_SIMPLIFY_NUMERALS #define LEAN_DEFAULT_SIMPLIFY_NUMERALS true #endif namespace lean { namespace blast { using simp::result; /* Names */ static name * g_simplify_unit_namespace = nullptr; static name * g_simplify_ac_namespace = nullptr; static name * g_simplify_som_namespace = nullptr; static name * g_simplify_numeral_namespace = nullptr; /* Options */ static name * g_simplify_max_steps = nullptr; static name * g_simplify_top_down = nullptr; static name * g_simplify_exhaustive = nullptr; static name * g_simplify_memoize = nullptr; static name * g_simplify_contextual = nullptr; static name * g_simplify_expand_macros = nullptr; static name * g_simplify_trace = nullptr; static name * g_simplify_fuse = nullptr; static name * g_simplify_numerals = nullptr; unsigned get_simplify_max_steps() { return ios().get_options().get_unsigned(*g_simplify_max_steps, LEAN_DEFAULT_SIMPLIFY_MAX_STEPS); } bool get_simplify_top_down() { return ios().get_options().get_bool(*g_simplify_top_down, LEAN_DEFAULT_SIMPLIFY_TOP_DOWN); } bool get_simplify_exhaustive() { return ios().get_options().get_bool(*g_simplify_exhaustive, LEAN_DEFAULT_SIMPLIFY_EXHAUSTIVE); } bool get_simplify_memoize() { return ios().get_options().get_bool(*g_simplify_memoize, LEAN_DEFAULT_SIMPLIFY_MEMOIZE); } bool get_simplify_contextual() { return ios().get_options().get_bool(*g_simplify_contextual, LEAN_DEFAULT_SIMPLIFY_CONTEXTUAL); } bool get_simplify_expand_macros() { return ios().get_options().get_bool(*g_simplify_expand_macros, LEAN_DEFAULT_SIMPLIFY_EXPAND_MACROS); } bool get_simplify_trace() { return ios().get_options().get_bool(*g_simplify_trace, LEAN_DEFAULT_SIMPLIFY_TRACE); } bool get_simplify_fuse() { return ios().get_options().get_bool(*g_simplify_fuse, LEAN_DEFAULT_SIMPLIFY_FUSE); } bool get_simplify_numerals() { return ios().get_options().get_bool(*g_simplify_numerals, LEAN_DEFAULT_SIMPLIFY_NUMERALS); } /* Miscellaneous helpers */ static bool is_add_app(expr const & e) { return is_const_app(e, get_add_name(), 4); } static bool is_mul_app(expr const & e) { return is_const_app(e, get_mul_name(), 4); } static bool is_neg_app(expr const & e) { return is_const_app(e, get_neg_name(), 3); } /* Main simplifier class */ class simplifier { blast_tmp_type_context m_tmp_tctx; app_builder m_app_builder; name m_rel; simp_rule_sets m_srss; simp_rule_sets m_ctx_srss; /* Logging */ unsigned m_num_steps{0}; unsigned m_depth{0}; /* Options */ unsigned m_max_steps{get_simplify_max_steps()}; bool m_top_down{get_simplify_top_down()}; bool m_exhaustive{get_simplify_exhaustive()}; bool m_memoize{get_simplify_memoize()}; bool m_contextual{get_simplify_contextual()}; bool m_expand_macros{get_simplify_expand_macros()}; bool m_trace{get_simplify_trace()}; bool m_fuse{get_simplify_fuse()}; bool m_numerals{get_simplify_numerals()}; /* Cache */ struct key { name m_rel; expr m_e; unsigned m_hash; key(name const & rel, expr const & e): m_rel(rel), m_e(e), m_hash(hash(rel.hash(), abstract_hash(e))) { } }; struct key_hash_fn { unsigned operator()(key const & k) const { return k.m_hash; } }; struct key_eq_fn { bool operator()(key const & k1, key const & k2) const { return k1.m_rel == k2.m_rel && abstract_is_equal(k1.m_e, k2.m_e); } }; typedef std::unordered_map simplify_cache; simplify_cache m_cache; optional cache_lookup(expr const & e); void cache_save(expr const & e, result const & r); /* Basic helpers */ bool using_eq() { return m_rel == get_eq_name(); } bool is_dependent_fn(expr const & f) { expr f_type = m_tmp_tctx->whnf(m_tmp_tctx->infer(f)); lean_assert(is_pi(f_type)); return has_free_vars(binding_body(f_type)); } simp_rule_sets add_to_srss(simp_rule_sets const & _srss, buffer & ls) { simp_rule_sets srss = _srss; for (unsigned i = 0; i < ls.size(); i++) { expr & l = ls[i]; tmp_type_context tctx(env(), ios()); srss = add(tctx, srss, mlocal_name(l), tctx.infer(l), l); } return srss; } expr unfold_reducible_instances(expr const & e); bool instantiate_emetas(blast_tmp_type_context & tmp_tctx, unsigned num_emeta, list const & emetas, list const & instances); /* Results */ result lift_from_eq(expr const & e_old, result const & r_eq); result join(result const & r1, result const & r2); result funext(result const & r, expr const & l); result finalize(result const & r); /* Simplification */ result simplify(expr const & e, simp_rule_sets const & srss); result simplify(expr const & e, bool is_root); result simplify_lambda(expr const & e); result simplify_pi(expr const & e); result simplify_app(expr const & e); result simplify_fun(expr const & e); optional simplify_numeral(expr const & e); /* Proving */ optional prove(expr const & thm); optional prove(expr const & thm, simp_rule_sets const & srss); /* Rewriting */ result rewrite(expr const & e); result rewrite(expr const & e, simp_rule_sets const & srss); result rewrite(expr const & e, simp_rule const & sr); /* Congruence */ result congr_fun_arg(result const & r_f, result const & r_arg); result congr(result const & r_f, result const & r_arg); result congr_fun(result const & r_f, expr const & arg); result congr_arg(expr const & f, result const & r_arg); result congr_funs(result const & r_f, buffer const & args); result try_congrs(expr const & e); result try_congr(expr const & e, congr_rule const & cr); template optional synth_congr(expr const & e, F && simp); /* Fusion */ result maybe_fuse(expr const & e, bool is_root); result fuse(expr const & e); expr_pair split_summand(expr const & e, expr const & f_mul, expr const & one); public: simplifier(name const & rel): m_app_builder(*m_tmp_tctx), m_rel(rel) { } result operator()(expr const & e, simp_rule_sets const & srss) { return simplify(e, srss); } }; /* Cache */ optional simplifier::cache_lookup(expr const & e) { auto it = m_cache.find(key(m_rel, e)); if (it == m_cache.end()) return optional(); /* The cache ignores subsingletons, so we may need to synthesize a congruence lemma. */ expr e_old = it->first.m_e; result r_old = it->second; lean_assert(abstract_is_equal(e, e_old)); if (e == e_old) return optional(r_old); lean_assert(is_app(e_old)); buffer new_args, old_args; expr const & f_new = get_app_args(e, new_args); DEBUG_CODE(expr const & f_old =) get_app_args(e_old, old_args); lean_assert(f_new == f_old); auto congr_lemma = mk_congr_lemma(f_new, new_args.size()); if (!congr_lemma) return optional(); expr proof = congr_lemma->get_proof(); expr type = congr_lemma->get_type(); unsigned i = 0; for_each(congr_lemma->get_arg_kinds(), [&](congr_arg_kind const & ckind) { if (ckind != congr_arg_kind::Cast) { lean_assert(new_args[i] == old_args[i]); } proof = mk_app(proof, new_args[i]); type = instantiate(binding_body(type), new_args[i]); expr rfl; switch (ckind) { case congr_arg_kind::Fixed: break; case congr_arg_kind::Eq: rfl = m_app_builder.mk_eq_refl(old_args[i]); proof = mk_app(proof, old_args[i], rfl); type = instantiate(binding_body(type), old_args[i]); type = instantiate(binding_body(type), rfl); break; case congr_arg_kind::Cast: proof = mk_app(proof, old_args[i]); type = instantiate(binding_body(type), old_args[i]); break; } i++; }); lean_assert(is_eq(type)); result r_congr = result(e_old, proof); return optional(join(r_congr, r_old)); } void simplifier::cache_save(expr const & e, result const & r) { m_cache.insert(mk_pair(key(m_rel, e), r)); } /* Results */ result simplifier::lift_from_eq(expr const & e_old, result const & r_eq) { if (!r_eq.has_proof()) return r_eq; lean_assert(r_eq.has_proof()); /* r_eq.get_proof() : e_old = r_eq.get_new() */ /* goal : e_old r_eq.get_new() */ expr l = m_tmp_tctx->mk_tmp_local(m_tmp_tctx->infer(e_old)); expr motive_local = m_app_builder.mk_app(m_rel, e_old, l); /* motive = fun y, e_old y */ expr motive = Fun(l, motive_local); /* Rxx = x x */ expr Rxx = m_app_builder.mk_refl(m_rel, e_old); expr pf = m_app_builder.mk_eq_rec(motive, Rxx, r_eq.get_proof()); return result(r_eq.get_new(), pf); } result simplifier::join(result const & r1, result const & r2) { /* Assumes that both results are with respect to the same relation */ if (!r1.has_proof()) { return r2; } else if (!r2.has_proof()) { lean_assert(r1.has_proof()); return result(r2.get_new(), r1.get_proof()); } else { /* If they both have proofs, we need to glue them together with transitivity. */ lean_assert(r1.has_proof() && r2.has_proof()); expr trans = m_app_builder.mk_trans(m_rel, r1.get_proof(), r2.get_proof()); return result(r2.get_new(), trans); } } result simplifier::funext(result const & r, expr const & l) { // theorem funext {f₁ f₂ : Πx : A, B x} : (∀x, f₁ x = f₂ x) → f₁ = f₂ := expr e = Fun(l, r.get_new()); if (!r.has_proof()) return result(e); expr pf = m_app_builder.mk_app(get_funext_name(), Fun(l, r.get_proof())); return result(e, pf); } result simplifier::finalize(result const & r) { if (r.has_proof()) return r; expr pf = m_app_builder.mk_refl(m_rel, r.get_new()); return result(r.get_new(), pf); } /* Simplification */ result simplifier::simplify(expr const & e, simp_rule_sets const & srss) { flet set_srss(m_srss, srss); simplify_cache fresh_cache; flet set_simplify_cache(m_cache, fresh_cache); return simplify(e, true); } result simplifier::simplify(expr const & e, bool is_root) { m_num_steps++; flet inc_depth(m_depth, m_depth+1); if (m_trace) { ios().get_diagnostic_channel() << m_depth << "." << m_rel << ": " << e << "\n"; } if (m_num_steps > m_max_steps) throw blast_exception("simplifier failed, maximum number of steps exceeded", e); if (m_memoize) { if (auto it = cache_lookup(e)) return *it; } if (m_numerals) { // TODO(dhs): cache these? if (auto r = simplify_numeral(e)) return *r; } result r(e); if (m_top_down) r = join(r, rewrite(whnf(r.get_new()))); r.update(whnf(r.get_new())); switch (r.get_new().kind()) { case expr_kind::Local: case expr_kind::Meta: case expr_kind::Sort: case expr_kind::Constant: // no-op break; case expr_kind::Var: lean_unreachable(); case expr_kind::Macro: if (m_expand_macros) { if (auto m = m_tmp_tctx->expand_macro(e)) r = join(r, simplify(whnf(*m), is_root)); } break; case expr_kind::Lambda: if (using_eq()) r = join(r, simplify_lambda(r.get_new())); break; case expr_kind::Pi: r = join(r, simplify_pi(r.get_new())); break; case expr_kind::App: r = join(r, simplify_app(r.get_new())); break; } if (!m_top_down) r = join(r, rewrite(whnf(r.get_new()))); if (r.get_new() == e && !using_eq()) { result r_eq; { flet use_eq(m_rel, get_eq_name()); r_eq = simplify(r.get_new(), is_root); } r = join(r, lift_from_eq(r.get_new(), r_eq)); } if (m_exhaustive && r.has_proof()) r = join(r, simplify(r.get_new(), is_root)); if (m_memoize) cache_save(e, r); if (m_fuse && using_eq()) r = join(r, maybe_fuse(r.get_new(), is_root)); return r; } result simplifier::simplify_lambda(expr const & e) { lean_assert(is_lambda(e)); expr t = e; buffer ls; while (is_lambda(t)) { expr d = instantiate_rev(binding_domain(t), ls.size(), ls.data()); expr l = m_tmp_tctx->mk_tmp_local(d, binding_info(t)); ls.push_back(l); t = instantiate(binding_body(t), l); } result r = simplify(t, false); for (int i = ls.size() - 1; i >= 0; --i) r = funext(r, ls[i]); return r; } result simplifier::simplify_pi(expr const & e) { lean_assert(is_pi(e)); return try_congrs(e); } expr simplifier::unfold_reducible_instances(expr const & e) { buffer args; expr f = get_app_args(e, args); fun_info f_info = get_fun_info(f, args.size()); int i = -1; for_each(f_info.get_params_info(), [&](param_info const & p_info) { i++; if (p_info.is_inst_implicit() && !p_info.is_subsingleton()) { // ios().get_diagnostic_channel() << "normalize: " // << args[i] << "\n==>\n" << blast::normalize(args[i]) << "\n"; args[i] = blast::normalize(args[i]); } }); return mk_app(f, args); } result simplifier::simplify_app(expr const & _e) { lean_assert(is_app(_e)); expr e = unfold_reducible_instances(_e); /* (1) Try user-defined congruences */ result r_user = try_congrs(e); if (r_user.has_proof()) { if (using_eq()) return join(r_user, simplify_fun(r_user.get_new())); else return r_user; } /* (2) Synthesize congruence lemma */ if (using_eq()) { optional r_args = synth_congr(e, [&](expr const & e) { return simplify(e, false); }); if (r_args) return join(*r_args, simplify_fun(r_args->get_new())); } /* (3) Fall back on generic binary congruence */ if (using_eq()) { expr const & f = app_fn(e); expr const & arg = app_arg(e); // TODO(dhs): it is not clear if this recursive call should be considered // a root or not, though does not matter since if + were being applied, // we would have synthesized a congruence rule in step (2). result r_f = simplify(f, false); if (is_dependent_fn(f)) { if (r_f.has_proof()) return congr_fun(r_f, arg); else return mk_app(r_f.get_new(), arg); } else { result r_arg = simplify(arg, false); return congr_fun_arg(r_f, r_arg); } } return result(e); } result simplifier::simplify_fun(expr const & e) { lean_assert(is_app(e)); buffer args; expr const & f = get_app_args(e, args); result r_f = simplify(f, true); return congr_funs(r_f, args); } optional simplifier::simplify_numeral(expr const & e) { if (is_num(e)) { return optional(result(e)); } else if (is_add_app(e) || is_mul_app(e)) { buffer args; get_app_args(e, args); if (is_num(args[2]) && is_num(args[3])){ expr_pair r = mk_norm_num(*m_tmp_tctx, e); return optional(result(r.first, r.second)); } } // TODO(dhs): simplify division and substraction as well return optional(); } /* Proving */ optional simplifier::prove(expr const & thm) { flet set_name(m_rel, get_iff_name()); result r_cond = simplify(thm, true); if (is_constant(r_cond.get_new()) && const_name(r_cond.get_new()) == get_true_name()) { expr pf = m_app_builder.mk_app(get_iff_elim_right_name(), finalize(r_cond).get_proof(), mk_constant(get_true_intro_name())); return some_expr(pf); } return none_expr(); } optional simplifier::prove(expr const & thm, simp_rule_sets const & srss) { flet set_name(m_rel, get_iff_name()); result r_cond = simplify(thm, srss); if (is_constant(r_cond.get_new()) && const_name(r_cond.get_new()) == get_true_name()) { expr pf = m_app_builder.mk_app(get_iff_elim_right_name(), finalize(r_cond).get_proof(), mk_constant(get_true_intro_name())); return some_expr(pf); } return none_expr(); } /* Rewriting */ result simplifier::rewrite(expr const & e) { result r(e); while (true) { result r_ctx = rewrite(r.get_new(), m_ctx_srss); result r_new = rewrite(r_ctx.get_new(), m_srss); if (!r_ctx.has_proof() && !r_new.has_proof()) break; r = join(join(r, r_ctx), r_new); } return r; } result simplifier::rewrite(expr const & e, simp_rule_sets const & srss) { result r(e); simp_rule_set const * sr = srss.find(m_rel); if (!sr) return r; list const * srs = sr->find_simp(e); if (!srs) return r; for_each(*srs, [&](simp_rule const & sr) { result r_new = rewrite(r.get_new(), sr); if (!r_new.has_proof()) return; r = join(r, r_new); }); return r; } result simplifier::rewrite(expr const & e, simp_rule const & sr) { blast_tmp_type_context tmp_tctx(sr.get_num_umeta(), sr.get_num_emeta()); if (!tmp_tctx->is_def_eq(e, sr.get_lhs())) return result(e); if (m_trace) { expr new_lhs = tmp_tctx->instantiate_uvars_mvars(sr.get_lhs()); expr new_rhs = tmp_tctx->instantiate_uvars_mvars(sr.get_rhs()); ios().get_diagnostic_channel() << "REW(" << sr.get_id() << ") " << "[" << new_lhs << " =?= " << new_rhs << "]\n"; } if (!instantiate_emetas(tmp_tctx, sr.get_num_emeta(), sr.get_emetas(), sr.get_instances())) return result(e); for (unsigned i = 0; i < sr.get_num_umeta(); i++) { if (!tmp_tctx->is_uvar_assigned(i)) return result(e); } expr new_lhs = tmp_tctx->instantiate_uvars_mvars(sr.get_lhs()); expr new_rhs = tmp_tctx->instantiate_uvars_mvars(sr.get_rhs()); if (sr.is_perm()) { if (!is_lt(new_rhs, new_lhs, false)) return result(e); } expr pf = tmp_tctx->instantiate_uvars_mvars(sr.get_proof()); return result(new_rhs, pf); } /* Congruence */ result simplifier::congr_fun_arg(result const & r_f, result const & r_arg) { if (!r_f.has_proof() && !r_arg.has_proof()) return result(mk_app(r_f.get_new(), r_arg.get_new())); else if (!r_f.has_proof()) return congr_arg(r_f.get_new(), r_arg); else if (!r_arg.has_proof()) return congr_fun(r_f, r_arg.get_new()); else return congr(r_f, r_arg); } result simplifier::congr(result const & r_f, result const & r_arg) { lean_assert(r_f.has_proof() && r_arg.has_proof()); // theorem congr {A B : Type} {f₁ f₂ : A → B} {a₁ a₂ : A} (H₁ : f₁ = f₂) (H₂ : a₁ = a₂) : f₁ a₁ = f₂ a₂ expr e = mk_app(r_f.get_new(), r_arg.get_new()); expr pf = m_app_builder.mk_congr(r_f.get_proof(), r_arg.get_proof()); return result(e, pf); } result simplifier::congr_fun(result const & r_f, expr const & arg) { lean_assert(r_f.has_proof()); // theorem congr_fun {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) (a : A) : f a = g a expr e = mk_app(r_f.get_new(), arg); expr pf = m_app_builder.mk_congr_fun(r_f.get_proof(), arg); return result(e, pf); } result simplifier::congr_arg(expr const & f, result const & r_arg) { lean_assert(r_arg.has_proof()); // theorem congr_arg {A B : Type} {a₁ a₂ : A} (f : A → B) : a₁ = a₂ → f a₁ = f a₂ expr e = mk_app(f, r_arg.get_new()); expr pf = m_app_builder.mk_congr_arg(f, r_arg.get_proof()); return result(e, pf); } /* Note: handles reflexivity */ result simplifier::congr_funs(result const & r_f, buffer const & args) { // congr_fun : ∀ {A : Type} {B : A → Type} {f g : Π (x : A), B x}, f = g → (∀ (a : A), f a = g a) expr e = r_f.get_new(); for (unsigned i = 0; i < args.size(); ++i) { e = mk_app(e, args[i]); } if (!r_f.has_proof()) return result(e); expr pf = r_f.get_proof(); for (unsigned i = 0; i < args.size(); ++i) { pf = m_app_builder.mk_app(get_congr_fun_name(), pf, args[i]); } return result(e, pf); } result simplifier::try_congrs(expr const & e) { simp_rule_set const * sr = get_simp_rule_sets(env()).find(m_rel); if (!sr) return result(e); list const * crs = sr->find_congr(e); if (!crs) return result(e); result r(e); for_each(*crs, [&](congr_rule const & cr) { if (r.has_proof()) return; r = try_congr(e, cr); }); return r; } result simplifier::try_congr(expr const & e, congr_rule const & cr) { blast_tmp_type_context tmp_tctx(cr.get_num_umeta(), cr.get_num_emeta()); if (!tmp_tctx->is_def_eq(e, cr.get_lhs())) return result(e); if (m_trace) { ios().get_diagnostic_channel() << "<" << cr.get_id() << "> " << e << " === " << cr.get_lhs() << "\n"; } /* First, iterate over the congruence hypotheses */ bool failed = false; bool simplified = false; list const & congr_hyps = cr.get_congr_hyps(); for_each(congr_hyps, [&](expr const & m) { if (failed) return; buffer ls; expr m_type = tmp_tctx->instantiate_uvars_mvars(tmp_tctx->infer(m)); while (is_pi(m_type)) { expr d = instantiate_rev(binding_domain(m_type), ls.size(), ls.data()); expr l = tmp_tctx->mk_tmp_local(d, binding_info(m_type)); lean_assert(!has_metavar(l)); ls.push_back(l); m_type = instantiate(binding_body(m_type), l); } expr h_rel, h_lhs, h_rhs; lean_verify(is_simp_relation(env(), m_type, h_rel, h_lhs, h_rhs) && is_constant(h_rel)); { flet set_name(m_rel, const_name(h_rel)); flet set_ctx_srss(m_ctx_srss, add_to_srss(m_ctx_srss, ls)); h_lhs = tmp_tctx->instantiate_uvars_mvars(h_lhs); lean_assert(!has_metavar(h_lhs)); result r_congr_hyp = simplify(h_lhs, m_srss); if (r_congr_hyp.has_proof()) simplified = true; r_congr_hyp = finalize(r_congr_hyp); expr hyp = finalize(r_congr_hyp).get_proof(); if (!tmp_tctx->is_def_eq(m, Fun(ls, hyp))) failed = true; } }); if (failed || !simplified) return result(e); if (!instantiate_emetas(tmp_tctx, cr.get_num_emeta(), cr.get_emetas(), cr.get_instances())) return result(e); for (unsigned i = 0; i < cr.get_num_umeta(); i++) { if (!tmp_tctx->is_uvar_assigned(i)) return result(e); } expr e_s = tmp_tctx->instantiate_uvars_mvars(cr.get_rhs()); expr pf = tmp_tctx->instantiate_uvars_mvars(cr.get_proof()); return result(e_s, pf); } bool simplifier::instantiate_emetas(blast_tmp_type_context & tmp_tctx, unsigned num_emeta, list const & emetas, list const & instances) { bool failed = false; unsigned i = num_emeta; for_each2(emetas, instances, [&](expr const & m, bool const & is_instance) { i--; if (failed) return; expr m_type = tmp_tctx->instantiate_uvars_mvars(tmp_tctx->infer(m)); lean_assert(!has_metavar(m_type)); if (is_instance) { if (auto v = tmp_tctx->mk_class_instance(m_type)) { if (!tmp_tctx->force_assign(m, *v)) { if (m_trace) { ios().get_diagnostic_channel() << "unable to assign instance for: " << m_type << "\n"; } failed = true; return; } } else { if (m_trace) { ios().get_diagnostic_channel() << "unable to synthesize instance for: " << m_type << "\n"; } failed = true; return; } } if (tmp_tctx->is_mvar_assigned(i)) return; if (tmp_tctx->is_prop(m_type)) { if (auto pf = prove(m_type)) { lean_verify(tmp_tctx->is_def_eq(m, *pf)); return; } } if (m_trace) { ios().get_diagnostic_channel() << "failed to assign: " << m << " : " << m_type << "\n"; } failed = true; return; }); return !failed; } template optional simplifier::synth_congr(expr const & e, F && simp) { static_assert(std::is_same::type, result>::value, "synth_congr: simp must take expressions to results"); lean_assert(is_app(e)); buffer args; expr f = get_app_args(e, args); auto congr_lemma = mk_congr_lemma_for_simp(f, args.size()); if (!congr_lemma) return optional(); expr proof = congr_lemma->get_proof(); expr type = congr_lemma->get_type(); unsigned i = 0; bool simplified = false; buffer locals; for_each(congr_lemma->get_arg_kinds(), [&](congr_arg_kind const & ckind) { proof = mk_app(proof, args[i]); type = instantiate(binding_body(type), args[i]); if (ckind == congr_arg_kind::Eq) { result r_arg = simp(args[i]); if (r_arg.has_proof()) simplified = true; r_arg = finalize(r_arg); proof = mk_app(proof, r_arg.get_new(), r_arg.get_proof()); type = instantiate(binding_body(type), r_arg.get_new()); type = instantiate(binding_body(type), r_arg.get_proof()); } i++; }); lean_assert(is_eq(type)); buffer type_args; get_app_args(type, type_args); expr & new_e = type_args[2]; if (simplified) return optional(result(new_e, proof)); else return optional(result(new_e)); } /* Fusion */ result simplifier::maybe_fuse(expr const & e, bool is_root) { // ios().get_diagnostic_channel() << "maybe_fuse(" << e << ", " << is_root << ")\n"; if (!is_app(e)) return result(e); if (is_root && is_add_app(e)) return fuse(e); if (!is_root && is_add_app(e)) return result(e); lean_assert(!is_add_app(e)); /* At this point we know we are an application of something other than + */ optional r = synth_congr(e, [&](expr const & arg) { // ios().get_diagnostic_channel() << "synth_fuse: " << arg << "\n"; if (is_add_app(arg)) return fuse(arg); else return result(arg); }); if (r) return *r; else return result(e); } result simplifier::fuse(expr const & e) { lean_assert(is_add_app(e)); // ios().get_diagnostic_channel() << "FUSE: " << e << "\n\n"; flet no_recursive_fusion(m_fuse, false); /* Note: we assume all negations are on the outside of the summands */ /* Example 1. Input (e): n1 * x1 * n2 * x2 + x3 + - (x1 * x2 * n3) + (- x3) + x4 2. Split summands: (n1 * n2) * (x1 * x2) + 1 * x3 + (- n3) * (x1 * x2) + (- 1) * x3 + 1 * x4 3. Group by variable (e_grp): ((n1 * n2) * (x1 * x2) + (- n3) * (x1 * x2)) + (1 * x3 + (-1) * x3) + x4 4. Introduce locals (e_grp_ls): ((n1 * n2) * l1 + (- n3) * l1) + (1 * l2 + (-1) * l2) + l3 5. Fuse (e_fused_ls): (n1 * n2 + (- n3)) * l1 + (1 + (- 1)) * l2 + 1 * l3 6. Simplify coefficients (e_simp_ls): (n1 * n2 + (- n3)) * l1 + l3 7. Instantiate locals (e_simp): (n1 * n2 + (- n3)) * (x1 * x2) + x4 Proofs 1. Prove (1) == (3) using simplify with [ac] 2. Prove (4) == (5) using simplify with [som] 3. Prove (5) == (6) using simplify with [numeral] 4. Prove (4) == (6) by transitivity of proofs (2) and (3) 5. Prove (3) == (7) by instantiating proof (4) 6. Prove (1) == (7) by transitivity of proofs (1) and (5) */ /* Construct useful expressions */ buffer args; get_app_args(e, args); expr T = args[0]; expr f_add, f_mul, zero, one; try { f_add = m_app_builder.mk_partial_add(T); f_mul = m_app_builder.mk_partial_mul(T); zero = m_app_builder.mk_zero(T); one = m_app_builder.mk_one(T); expr left_distrib = m_app_builder.mk_partial_left_distrib(T); } catch (app_builder_exception & ex) { ios().get_diagnostic_channel() << "Cannot synthesize necessary instances\n"; return result(e); } /* (1 ==> 2) Split each summand into (a) numerals and (b) variables */ buffer numerals; buffer variables; expr s = e; while (is_add_app(s)) { buffer args; expr f = get_app_args(s, args); auto n_v = split_summand(args[2], f_mul, one); numerals.push_back(n_v.first); variables.push_back(n_v.second); s = args[3]; } auto n_v = split_summand(s, f_mul, one); numerals.push_back(n_v.first); variables.push_back(n_v.second); lean_assert(numerals.size() == variables.size()); /* (2 ==> 3, 4, 5) Group the summands by variable */ expr_bi_struct_map > variable_to_numerals; for (unsigned i = 0; i < numerals.size(); i++) { auto it = variable_to_numerals.find(variables[i]); if (it != variable_to_numerals.end()) it->second = cons(numerals[i], it->second); else variable_to_numerals.insert({variables[i], list(numerals[i])}); } expr e_grp = zero; expr e_grp_ls = zero; expr e_fused_ls = zero; buffer locals; variables.clear(); for (auto v_ns : variable_to_numerals) { expr local = m_tmp_tctx->mk_tmp_local(T); locals.push_back(local); variables.push_back(v_ns.first); expr term = zero; expr term_ls = zero; expr term_fused_ls = zero; for_each(v_ns.second, [&](expr const & n) { term = mk_app(f_add, mk_app(f_mul, v_ns.first, n), term); term_ls = mk_app(f_add, mk_app(f_mul, local, n), term_ls); term_fused_ls = mk_app(f_add, n, term_fused_ls); }); e_grp = mk_app(f_add, term, e_grp); e_grp_ls = mk_app(f_add, term_ls, e_grp_ls); e_fused_ls = mk_app(f_add, mk_app(f_mul, term_fused_ls, local), e_fused_ls); } /* Prove (1) == (3) using simplify with [ac] */ auto pf_1_3 = prove(m_app_builder.mk_eq(e, e_grp), get_simp_rule_sets(env(), ios(), *g_simplify_ac_namespace)); if (!pf_1_3) { diagnostic(env(), ios()) << e << "\n\n =?=\n\n" << e_grp << "\n"; throw blast_exception("Failed to prove (1) == (3) during fusion", e); } /* Prove (4) == (5) using simplify with [som] */ auto pf_4_5 = prove(m_app_builder.mk_eq(e_grp_ls, e_fused_ls), get_simp_rule_sets(env(), ios(), *g_simplify_som_namespace)); if (!pf_4_5) { diagnostic(env(), ios()) << e_grp_ls << "\n\n =?=\n\n" << e_fused_ls << "\n"; throw blast_exception("Failed to prove (4) == (5) during fusion", e); } /* Prove (5) == (6) using simplify with [numeral] */ result r_simp_ls = simplify(e_fused_ls, get_simp_rule_sets(env(), ios(), *g_simplify_numeral_namespace)); /* Prove (4) == (6) by transitivity of proofs (2) and (3) */ expr pf_4_6; if (!r_simp_ls.has_proof()) pf_4_6 = *pf_4_5; else pf_4_6 = m_app_builder.mk_eq_trans(*pf_4_5, r_simp_ls.get_proof()); /* Prove (3) == (7) by instantiating proof (4) */ expr pf_3_7 = mk_app(Fun(locals, pf_4_6), variables); /* Prove (1) == (7) by transitivity of proofs (1) and (5) */ expr pf_1_7 = m_app_builder.mk_eq_trans(*pf_1_3, pf_3_7); return result(mk_app(Fun(locals, r_simp_ls.get_new()), variables), pf_1_7); } expr_pair simplifier::split_summand(expr const & e, expr const & f_mul, expr const & one) { /* [e] is a possibly negated, possibly null product, where some of the multiplicands are numerals and the rest are treated as variables. This method does the following conversion: - (x1 * n1 * x2 * n3) ==> (-1 * n1 * n3) * (x1 * x2) */ expr s = e; expr numeral = one; expr variable = one; if (is_neg_app(s)) { buffer args; get_app_args(s, args); numeral = m_app_builder.mk_app(get_neg_name(), one); s = args[2]; } while (is_mul_app(s)) { buffer args; get_app_args(s, args); expr const & multiplicand = args[2]; if (is_num(multiplicand)) { numeral = mk_app(f_mul, multiplicand, numeral); } else { if (variable == one) variable = multiplicand; else variable = mk_app(f_mul, multiplicand, variable); } s = args[3]; } if (is_num(s)) { numeral = mk_app(f_mul, s, numeral); } else { if (variable == one) variable = s; else variable = mk_app(f_mul, s, variable); } return mk_pair(numeral, variable); } /* Setup and teardown */ void initialize_simplifier() { g_simplify_unit_namespace = new name{"simplifier", "unit"}; g_simplify_ac_namespace = new name{"simplifier", "ac"}; g_simplify_som_namespace = new name{"simplifier", "som"}; g_simplify_numeral_namespace = new name{"simplifier", "numeral"}; g_simplify_max_steps = new name{"simplify", "max_steps"}; g_simplify_top_down = new name{"simplify", "top_down"}; g_simplify_exhaustive = new name{"simplify", "exhaustive"}; g_simplify_memoize = new name{"simplify", "memoize"}; g_simplify_contextual = new name{"simplify", "contextual"}; g_simplify_expand_macros = new name{"simplify", "expand_macros"}; g_simplify_trace = new name{"simplify", "trace"}; g_simplify_fuse = new name{"simplify", "fuse"}; g_simplify_numerals = new name{"simplify", "numerals"}; register_unsigned_option(*g_simplify_max_steps, LEAN_DEFAULT_SIMPLIFY_MAX_STEPS, "(simplify) max allowed steps in simplification"); register_bool_option(*g_simplify_top_down, LEAN_DEFAULT_SIMPLIFY_TOP_DOWN, "(simplify) use top-down rewriting instead of bottom-up"); register_bool_option(*g_simplify_exhaustive, LEAN_DEFAULT_SIMPLIFY_EXHAUSTIVE, "(simplify) rewrite exhaustively"); register_bool_option(*g_simplify_memoize, LEAN_DEFAULT_SIMPLIFY_MEMOIZE, "(simplify) memoize simplifications"); register_bool_option(*g_simplify_contextual, LEAN_DEFAULT_SIMPLIFY_CONTEXTUAL, "(simplify) use contextual simplification"); register_bool_option(*g_simplify_expand_macros, LEAN_DEFAULT_SIMPLIFY_EXPAND_MACROS, "(simplify) expand macros"); register_bool_option(*g_simplify_trace, LEAN_DEFAULT_SIMPLIFY_TRACE, "(simplify) trace"); register_bool_option(*g_simplify_fuse, LEAN_DEFAULT_SIMPLIFY_FUSE, "(simplify) fuse addition in distrib structures"); register_bool_option(*g_simplify_numerals, LEAN_DEFAULT_SIMPLIFY_NUMERALS, "(simplify) simplify (+, *, -, /) over numerals"); } void finalize_simplifier() { delete g_simplify_numerals; delete g_simplify_fuse; delete g_simplify_trace; delete g_simplify_expand_macros; delete g_simplify_contextual; delete g_simplify_memoize; delete g_simplify_exhaustive; delete g_simplify_top_down; delete g_simplify_max_steps; delete g_simplify_numeral_namespace; delete g_simplify_som_namespace; delete g_simplify_ac_namespace; delete g_simplify_unit_namespace; } /* Entry point */ result simplify(name const & rel, expr const & e, simp_rule_sets const & srss) { return simplifier(rel)(e, srss); } }}