/- Copyright (c) 2014 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Floris van Doorn Partially ported from Coq HoTT Theorems about path types (identity types) -/ import types.sigma open eq sigma sigma.ops equiv is_equiv is_trunc namespace eq /- Path spaces -/ section variables {A B : Type} {a a₁ a₂ a₃ a₄ a' : A} {b b1 b2 : B} {f g : A → B} {h : B → A} {p p' p'' : a₁ = a₂} /- The path spaces of a path space are not, of course, determined; they are just the higher-dimensional structure of the original space. -/ /- some lemmas about whiskering or other higher paths -/ theorem whisker_left_con_right (p : a₁ = a₂) {q q' q'' : a₂ = a₃} (r : q = q') (s : q' = q'') : whisker_left p (r ⬝ s) = whisker_left p r ⬝ whisker_left p s := begin induction p, induction r, induction s, reflexivity end theorem whisker_right_con_right (q : a₂ = a₃) (r : p = p') (s : p' = p'') : whisker_right q (r ⬝ s) = whisker_right q r ⬝ whisker_right q s := begin induction q, induction r, induction s, reflexivity end theorem whisker_left_con_left (p : a₁ = a₂) (p' : a₂ = a₃) {q q' : a₃ = a₄} (r : q = q') : whisker_left (p ⬝ p') r = !con.assoc ⬝ whisker_left p (whisker_left p' r) ⬝ !con.assoc' := begin induction p', induction p, induction r, induction q, reflexivity end theorem whisker_right_con_left {p p' : a₁ = a₂} (q : a₂ = a₃) (q' : a₃ = a₄) (r : p = p') : whisker_right (q ⬝ q') r = !con.assoc' ⬝ whisker_right q' (whisker_right q r) ⬝ !con.assoc := begin induction q', induction q, induction r, induction p, reflexivity end theorem whisker_left_inv_left (p : a₂ = a₁) {q q' : a₂ = a₃} (r : q = q') : !con_inv_cancel_left⁻¹ ⬝ whisker_left p (whisker_left p⁻¹ r) ⬝ !con_inv_cancel_left = r := begin induction p, induction r, induction q, reflexivity end theorem whisker_left_inv (p : a₁ = a₂) {q q' : a₂ = a₃} (r : q = q') : whisker_left p r⁻¹ = (whisker_left p r)⁻¹ := by induction r; reflexivity theorem whisker_right_inv {p p' : a₁ = a₂} (q : a₂ = a₃) (r : p = p') : whisker_right q r⁻¹ = (whisker_right q r)⁻¹ := by induction r; reflexivity theorem ap_eq_apd10 {B : A → Type} {f g : Πa, B a} (p : f = g) (a : A) : ap (λh, h a) p = apd10 p a := by induction p; reflexivity theorem inverse2_right_inv (r : p = p') : r ◾ inverse2 r ⬝ con.right_inv p' = con.right_inv p := by induction r;induction p;reflexivity theorem inverse2_left_inv (r : p = p') : inverse2 r ◾ r ⬝ con.left_inv p' = con.left_inv p := by induction r;induction p;reflexivity theorem ap_con_right_inv (f : A → B) (p : a₁ = a₂) : ap_con f p p⁻¹ ⬝ whisker_left _ (ap_inv f p) ⬝ con.right_inv (ap f p) = ap (ap f) (con.right_inv p) := by induction p;reflexivity theorem ap_con_left_inv (f : A → B) (p : a₁ = a₂) : ap_con f p⁻¹ p ⬝ whisker_right _ (ap_inv f p) ⬝ con.left_inv (ap f p) = ap (ap f) (con.left_inv p) := by induction p;reflexivity theorem idp_con_whisker_left {q q' : a₂ = a₃} (r : q = q') : !idp_con⁻¹ ⬝ whisker_left idp r = r ⬝ !idp_con⁻¹ := by induction r;induction q;reflexivity theorem whisker_left_idp_con {q q' : a₂ = a₃} (r : q = q') : whisker_left idp r ⬝ !idp_con = !idp_con ⬝ r := by induction r;induction q;reflexivity theorem idp_con_idp {p : a = a} (q : p = idp) : idp_con p ⬝ q = ap (λp, idp ⬝ p) q := by cases q;reflexivity definition ap_is_constant [unfold 8] {A B : Type} {f : A → B} {b : B} (p : Πx, f x = b) {x y : A} (q : x = y) : ap f q = p x ⬝ (p y)⁻¹ := by induction q;exact !con.right_inv⁻¹ definition inv2_inv {p q : a = a'} (r : p = q) : inverse2 r⁻¹ = (inverse2 r)⁻¹ := by induction r;reflexivity definition inv2_con {p p' p'' : a = a'} (r : p = p') (r' : p' = p'') : inverse2 (r ⬝ r') = inverse2 r ⬝ inverse2 r' := by induction r';induction r;reflexivity definition con2_inv {p₁ q₁ : a₁ = a₂} {p₂ q₂ : a₂ = a₃} (r₁ : p₁ = q₁) (r₂ : p₂ = q₂) : (r₁ ◾ r₂)⁻¹ = r₁⁻¹ ◾ r₂⁻¹ := by induction r₁;induction r₂;reflexivity theorem eq_con_inv_of_con_eq_whisker_left {A : Type} {a a₂ a₃ : A} {p : a = a₂} {q q' : a₂ = a₃} {r : a = a₃} (s' : q = q') (s : p ⬝ q' = r) : eq_con_inv_of_con_eq (whisker_left p s' ⬝ s) = eq_con_inv_of_con_eq s ⬝ whisker_left r (inverse2 s')⁻¹ := by induction s';induction q;induction s;reflexivity theorem right_inv_eq_idp {A : Type} {a : A} {p : a = a} (r : p = idpath a) : con.right_inv p = r ◾ inverse2 r := by cases r;reflexivity /- Transporting in path spaces. There are potentially a lot of these lemmas, so we adopt a uniform naming scheme: - `l` means the left endpoint varies - `r` means the right endpoint varies - `F` means application of a function to that (varying) endpoint. -/ definition eq_transport_l (p : a₁ = a₂) (q : a₁ = a₃) : transport (λx, x = a₃) p q = p⁻¹ ⬝ q := by induction p; induction q; reflexivity definition eq_transport_r (p : a₂ = a₃) (q : a₁ = a₂) : transport (λx, a₁ = x) p q = q ⬝ p := by induction p; induction q; reflexivity definition eq_transport_lr (p : a₁ = a₂) (q : a₁ = a₁) : transport (λx, x = x) p q = p⁻¹ ⬝ q ⬝ p := by induction p; rewrite [▸*,idp_con] definition eq_transport_Fl (p : a₁ = a₂) (q : f a₁ = b) : transport (λx, f x = b) p q = (ap f p)⁻¹ ⬝ q := by induction p; induction q; reflexivity definition eq_transport_Fr (p : a₁ = a₂) (q : b = f a₁) : transport (λx, b = f x) p q = q ⬝ (ap f p) := by induction p; reflexivity definition eq_transport_FlFr (p : a₁ = a₂) (q : f a₁ = g a₁) : transport (λx, f x = g x) p q = (ap f p)⁻¹ ⬝ q ⬝ (ap g p) := by induction p; rewrite [▸*,idp_con] definition eq_transport_FlFr_D {B : A → Type} {f g : Πa, B a} (p : a₁ = a₂) (q : f a₁ = g a₁) : transport (λx, f x = g x) p q = (apdt f p)⁻¹ ⬝ ap (transport B p) q ⬝ (apdt g p) := by induction p; rewrite [▸*,idp_con,ap_id] definition eq_transport_FFlr (p : a₁ = a₂) (q : h (f a₁) = a₁) : transport (λx, h (f x) = x) p q = (ap h (ap f p))⁻¹ ⬝ q ⬝ p := by induction p; rewrite [▸*,idp_con] definition eq_transport_lFFr (p : a₁ = a₂) (q : a₁ = h (f a₁)) : transport (λx, x = h (f x)) p q = p⁻¹ ⬝ q ⬝ (ap h (ap f p)) := by induction p; rewrite [▸*,idp_con] /- Pathovers -/ -- In the comment we give the fibration of the pathover -- we should probably try to do everything just with pathover_eq (defined in cubical.square), -- the following definitions may be removed in future. definition eq_pathover_l (p : a₁ = a₂) (q : a₁ = a₃) : q =[p] p⁻¹ ⬝ q := /-(λx, x = a₃)-/ by induction p; induction q; exact idpo definition eq_pathover_r (p : a₂ = a₃) (q : a₁ = a₂) : q =[p] q ⬝ p := /-(λx, a₁ = x)-/ by induction p; induction q; exact idpo definition eq_pathover_lr (p : a₁ = a₂) (q : a₁ = a₁) : q =[p] p⁻¹ ⬝ q ⬝ p := /-(λx, x = x)-/ by induction p; rewrite [▸*,idp_con]; exact idpo definition eq_pathover_Fl (p : a₁ = a₂) (q : f a₁ = b) : q =[p] (ap f p)⁻¹ ⬝ q := /-(λx, f x = b)-/ by induction p; induction q; exact idpo definition eq_pathover_Fl' (p : a₁ = a₂) (q : f a₂ = b) : (ap f p) ⬝ q =[p] q := /-(λx, f x = b)-/ by induction p; induction q; exact idpo definition eq_pathover_Fr (p : a₁ = a₂) (q : b = f a₁) : q =[p] q ⬝ (ap f p) := /-(λx, b = f x)-/ by induction p; exact idpo definition eq_pathover_FlFr (p : a₁ = a₂) (q : f a₁ = g a₁) : q =[p] (ap f p)⁻¹ ⬝ q ⬝ (ap g p) := /-(λx, f x = g x)-/ by induction p; rewrite [▸*,idp_con]; exact idpo definition eq_pathover_FlFr_D {B : A → Type} {f g : Πa, B a} (p : a₁ = a₂) (q : f a₁ = g a₁) : q =[p] (apdt f p)⁻¹ ⬝ ap (transport B p) q ⬝ (apdt g p) := /-(λx, f x = g x)-/ by induction p; rewrite [▸*,idp_con,ap_id];exact idpo definition eq_pathover_FFlr (p : a₁ = a₂) (q : h (f a₁) = a₁) : q =[p] (ap h (ap f p))⁻¹ ⬝ q ⬝ p := /-(λx, h (f x) = x)-/ by induction p; rewrite [▸*,idp_con];exact idpo definition eq_pathover_lFFr (p : a₁ = a₂) (q : a₁ = h (f a₁)) : q =[p] p⁻¹ ⬝ q ⬝ (ap h (ap f p)) := /-(λx, x = h (f x))-/ by induction p; rewrite [▸*,idp_con];exact idpo definition eq_pathover_r_idp (p : a₁ = a₂) : idp =[p] p := /-(λx, a₁ = x)-/ by induction p; exact idpo definition eq_pathover_l_idp (p : a₁ = a₂) : idp =[p] p⁻¹ := /-(λx, x = a₁)-/ by induction p; exact idpo definition eq_pathover_l_idp' (p : a₁ = a₂) : idp =[p⁻¹] p := /-(λx, x = a₂)-/ by induction p; exact idpo -- The Functorial action of paths is [ap]. /- Equivalences between path spaces -/ /- [is_equiv_ap] is in init.equiv -/ definition equiv_ap [constructor] (f : A → B) [H : is_equiv f] (a₁ a₂ : A) : (a₁ = a₂) ≃ (f a₁ = f a₂) := equiv.mk (ap f) _ /- Path operations are equivalences -/ definition is_equiv_eq_inverse (a₁ a₂ : A) : is_equiv (inverse : a₁ = a₂ → a₂ = a₁) := is_equiv.mk inverse inverse inv_inv inv_inv (λp, eq.rec_on p idp) local attribute is_equiv_eq_inverse [instance] definition eq_equiv_eq_symm (a₁ a₂ : A) : (a₁ = a₂) ≃ (a₂ = a₁) := equiv.mk inverse _ definition is_equiv_concat_left [constructor] [instance] (p : a₁ = a₂) (a₃ : A) : is_equiv (concat p : a₂ = a₃ → a₁ = a₃) := is_equiv.mk (concat p) (concat p⁻¹) (con_inv_cancel_left p) (inv_con_cancel_left p) abstract (λq, by induction p;induction q;reflexivity) end local attribute is_equiv_concat_left [instance] definition equiv_eq_closed_left [constructor] (a₃ : A) (p : a₁ = a₂) : (a₁ = a₃) ≃ (a₂ = a₃) := equiv.mk (concat p⁻¹) _ definition is_equiv_concat_right [constructor] [instance] (p : a₂ = a₃) (a₁ : A) : is_equiv (λq : a₁ = a₂, q ⬝ p) := is_equiv.mk (λq, q ⬝ p) (λq, q ⬝ p⁻¹) (λq, inv_con_cancel_right q p) (λq, con_inv_cancel_right q p) (λq, by induction p;induction q;reflexivity) local attribute is_equiv_concat_right [instance] definition equiv_eq_closed_right [constructor] (a₁ : A) (p : a₂ = a₃) : (a₁ = a₂) ≃ (a₁ = a₃) := equiv.mk (λq, q ⬝ p) _ definition eq_equiv_eq_closed [constructor] (p : a₁ = a₂) (q : a₃ = a₄) : (a₁ = a₃) ≃ (a₂ = a₄) := equiv.trans (equiv_eq_closed_left a₃ p) (equiv_eq_closed_right a₂ q) definition loop_equiv_eq_closed [constructor] {A : Type} {a a' : A} (p : a = a') : (a = a) ≃ (a' = a') := eq_equiv_eq_closed p p definition is_equiv_whisker_left [constructor] (p : a₁ = a₂) (q r : a₂ = a₃) : is_equiv (whisker_left p : q = r → p ⬝ q = p ⬝ r) := begin fapply adjointify, {intro s, apply (!cancel_left s)}, {intro s, apply concat, {apply whisker_left_con_right}, apply concat, rotate_left 1, apply (whisker_left_inv_left p s), apply concat2, {apply concat, {apply whisker_left_con_right}, apply concat2, {induction p, induction q, reflexivity}, {reflexivity}}, {induction p, induction r, reflexivity}}, {intro s, induction s, induction q, induction p, reflexivity} end definition eq_equiv_con_eq_con_left [constructor] (p : a₁ = a₂) (q r : a₂ = a₃) : (q = r) ≃ (p ⬝ q = p ⬝ r) := equiv.mk _ !is_equiv_whisker_left definition is_equiv_whisker_right [constructor] {p q : a₁ = a₂} (r : a₂ = a₃) : is_equiv (λs, whisker_right r s : p = q → p ⬝ r = q ⬝ r) := begin fapply adjointify, {intro s, apply (!cancel_right s)}, {intro s, induction r, cases s, induction q, reflexivity}, {intro s, induction s, induction r, induction p, reflexivity} end definition eq_equiv_con_eq_con_right [constructor] (p q : a₁ = a₂) (r : a₂ = a₃) : (p = q) ≃ (p ⬝ r = q ⬝ r) := equiv.mk _ !is_equiv_whisker_right /- The following proofs can be simplified a bit by concatenating previous equivalences. However, these proofs have the advantage that the inverse is definitionally equal to what we would expect -/ definition is_equiv_con_eq_of_eq_inv_con [constructor] (p : a₁ = a₃) (q : a₂ = a₃) (r : a₂ = a₁) : is_equiv (con_eq_of_eq_inv_con : p = r⁻¹ ⬝ q → r ⬝ p = q) := begin fapply adjointify, { apply eq_inv_con_of_con_eq}, { intro s, induction r, rewrite [↑[con_eq_of_eq_inv_con,eq_inv_con_of_con_eq], con.assoc,con.assoc,con.left_inv,▸*,-con.assoc,con.right_inv,▸* at *,idp_con s]}, { intro s, induction r, rewrite [↑[con_eq_of_eq_inv_con,eq_inv_con_of_con_eq], con.assoc,con.assoc,con.right_inv,▸*,-con.assoc,con.left_inv,▸* at *,idp_con s] }, end definition eq_inv_con_equiv_con_eq [constructor] (p : a₁ = a₃) (q : a₂ = a₃) (r : a₂ = a₁) : (p = r⁻¹ ⬝ q) ≃ (r ⬝ p = q) := equiv.mk _ !is_equiv_con_eq_of_eq_inv_con definition is_equiv_con_eq_of_eq_con_inv [constructor] (p : a₁ = a₃) (q : a₂ = a₃) (r : a₂ = a₁) : is_equiv (con_eq_of_eq_con_inv : r = q ⬝ p⁻¹ → r ⬝ p = q) := begin fapply adjointify, { apply eq_con_inv_of_con_eq}, { intro s, induction p, rewrite [↑[con_eq_of_eq_con_inv,eq_con_inv_of_con_eq]]}, { intro s, induction p, rewrite [↑[con_eq_of_eq_con_inv,eq_con_inv_of_con_eq]] }, end definition eq_con_inv_equiv_con_eq [constructor] (p : a₁ = a₃) (q : a₂ = a₃) (r : a₂ = a₁) : (r = q ⬝ p⁻¹) ≃ (r ⬝ p = q) := equiv.mk _ !is_equiv_con_eq_of_eq_con_inv definition is_equiv_inv_con_eq_of_eq_con [constructor] (p : a₁ = a₃) (q : a₂ = a₃) (r : a₁ = a₂) : is_equiv (inv_con_eq_of_eq_con : p = r ⬝ q → r⁻¹ ⬝ p = q) := begin fapply adjointify, { apply eq_con_of_inv_con_eq}, { intro s, induction r, rewrite [↑[inv_con_eq_of_eq_con,eq_con_of_inv_con_eq], con.assoc,con.assoc,con.left_inv,▸*,-con.assoc,con.right_inv,▸* at *,idp_con s]}, { intro s, induction r, rewrite [↑[inv_con_eq_of_eq_con,eq_con_of_inv_con_eq], con.assoc,con.assoc,con.right_inv,▸*,-con.assoc,con.left_inv,▸* at *,idp_con s] }, end definition eq_con_equiv_inv_con_eq [constructor] (p : a₁ = a₃) (q : a₂ = a₃) (r : a₁ = a₂) : (p = r ⬝ q) ≃ (r⁻¹ ⬝ p = q) := equiv.mk _ !is_equiv_inv_con_eq_of_eq_con definition is_equiv_con_inv_eq_of_eq_con [constructor] (p : a₃ = a₁) (q : a₂ = a₃) (r : a₂ = a₁) : is_equiv (con_inv_eq_of_eq_con : r = q ⬝ p → r ⬝ p⁻¹ = q) := begin fapply adjointify, { apply eq_con_of_con_inv_eq}, { intro s, induction p, rewrite [↑[con_inv_eq_of_eq_con,eq_con_of_con_inv_eq]]}, { intro s, induction p, rewrite [↑[con_inv_eq_of_eq_con,eq_con_of_con_inv_eq]] }, end definition eq_con_equiv_con_inv_eq (p : a₃ = a₁) (q : a₂ = a₃) (r : a₂ = a₁) : (r = q ⬝ p) ≃ (r ⬝ p⁻¹ = q) := equiv.mk _ !is_equiv_con_inv_eq_of_eq_con local attribute is_equiv_inv_con_eq_of_eq_con is_equiv_con_inv_eq_of_eq_con is_equiv_con_eq_of_eq_con_inv is_equiv_con_eq_of_eq_inv_con [instance] definition is_equiv_eq_con_of_inv_con_eq (p : a₁ = a₃) (q : a₂ = a₃) (r : a₂ = a₁) : is_equiv (eq_con_of_inv_con_eq : r⁻¹ ⬝ q = p → q = r ⬝ p) := is_equiv_inv inv_con_eq_of_eq_con definition is_equiv_eq_con_of_con_inv_eq (p : a₁ = a₃) (q : a₂ = a₃) (r : a₂ = a₁) : is_equiv (eq_con_of_con_inv_eq : q ⬝ p⁻¹ = r → q = r ⬝ p) := is_equiv_inv con_inv_eq_of_eq_con definition is_equiv_eq_con_inv_of_con_eq (p : a₁ = a₃) (q : a₂ = a₃) (r : a₂ = a₁) : is_equiv (eq_con_inv_of_con_eq : r ⬝ p = q → r = q ⬝ p⁻¹) := is_equiv_inv con_eq_of_eq_con_inv definition is_equiv_eq_inv_con_of_con_eq (p : a₁ = a₃) (q : a₂ = a₃) (r : a₂ = a₁) : is_equiv (eq_inv_con_of_con_eq : r ⬝ p = q → p = r⁻¹ ⬝ q) := is_equiv_inv con_eq_of_eq_inv_con definition is_equiv_con_inv_eq_idp [constructor] (p q : a₁ = a₂) : is_equiv (con_inv_eq_idp : p = q → p ⬝ q⁻¹ = idp) := begin fapply adjointify, { apply eq_of_con_inv_eq_idp}, { intro s, induction q, esimp at *, cases s, reflexivity}, { intro s, induction s, induction p, reflexivity}, end definition is_equiv_inv_con_eq_idp [constructor] (p q : a₁ = a₂) : is_equiv (inv_con_eq_idp : p = q → q⁻¹ ⬝ p = idp) := begin fapply adjointify, { apply eq_of_inv_con_eq_idp}, { intro s, induction q, esimp [eq_of_inv_con_eq_idp] at *, eapply is_equiv_rect (eq_equiv_con_eq_con_left idp p idp), clear s, intro s, cases s, reflexivity}, { intro s, induction s, induction p, reflexivity}, end definition eq_equiv_con_inv_eq_idp [constructor] (p q : a₁ = a₂) : (p = q) ≃ (p ⬝ q⁻¹ = idp) := equiv.mk _ !is_equiv_con_inv_eq_idp definition eq_equiv_inv_con_eq_idp [constructor] (p q : a₁ = a₂) : (p = q) ≃ (q⁻¹ ⬝ p = idp) := equiv.mk _ !is_equiv_inv_con_eq_idp /- Pathover Equivalences -/ definition eq_pathover_equiv_l (p : a₁ = a₂) (q : a₁ = a₃) (r : a₂ = a₃) : q =[p] r ≃ q = p ⬝ r := /-(λx, x = a₃)-/ by induction p; exact !pathover_idp ⬝e !equiv_eq_closed_right !idp_con⁻¹ definition eq_pathover_equiv_r (p : a₂ = a₃) (q : a₁ = a₂) (r : a₁ = a₃) : q =[p] r ≃ q ⬝ p = r := /-(λx, a₁ = x)-/ by induction p; apply pathover_idp definition eq_pathover_equiv_lr (p : a₁ = a₂) (q : a₁ = a₁) (r : a₂ = a₂) : q =[p] r ≃ q ⬝ p = p ⬝ r := /-(λx, x = x)-/ by induction p; exact !pathover_idp ⬝e !equiv_eq_closed_right !idp_con⁻¹ definition eq_pathover_equiv_Fl (p : a₁ = a₂) (q : f a₁ = b) (r : f a₂ = b) : q =[p] r ≃ q = ap f p ⬝ r := /-(λx, f x = b)-/ by induction p; exact !pathover_idp ⬝e !equiv_eq_closed_right !idp_con⁻¹ definition eq_pathover_equiv_Fr (p : a₁ = a₂) (q : b = f a₁) (r : b = f a₂) : q =[p] r ≃ q ⬝ ap f p = r := /-(λx, b = f x)-/ by induction p; apply pathover_idp definition eq_pathover_equiv_FlFr (p : a₁ = a₂) (q : f a₁ = g a₁) (r : f a₂ = g a₂) : q =[p] r ≃ q ⬝ ap g p = ap f p ⬝ r := /-(λx, f x = g x)-/ by induction p; exact !pathover_idp ⬝e !equiv_eq_closed_right !idp_con⁻¹ definition eq_pathover_equiv_FFlr (p : a₁ = a₂) (q : h (f a₁) = a₁) (r : h (f a₂) = a₂) : q =[p] r ≃ q ⬝ p = ap h (ap f p) ⬝ r := /-(λx, h (f x) = x)-/ by induction p; exact !pathover_idp ⬝e !equiv_eq_closed_right !idp_con⁻¹ definition eq_pathover_equiv_lFFr (p : a₁ = a₂) (q : a₁ = h (f a₁)) (r : a₂ = h (f a₂)) : q =[p] r ≃ q ⬝ ap h (ap f p) = p ⬝ r := /-(λx, x = h (f x))-/ by induction p; exact !pathover_idp ⬝e !equiv_eq_closed_right !idp_con⁻¹ -- a lot of this library still needs to be ported from Coq HoTT -- the behavior of equality in other types is described in the corresponding type files -- encode decode method open is_trunc definition encode_decode_method' (a₀ a : A) (code : A → Type) (c₀ : code a₀) (decode : Π(a : A) (c : code a), a₀ = a) (encode_decode : Π(a : A) (c : code a), c₀ =[decode a c] c) (decode_encode : decode a₀ c₀ = idp) : (a₀ = a) ≃ code a := begin fapply equiv.MK, { intro p, exact p ▸ c₀}, { apply decode}, { intro c, apply tr_eq_of_pathover, apply encode_decode}, { intro p, induction p, apply decode_encode}, end end section parameters {A : Type} (a₀ : A) (code : A → Type) (H : is_contr (Σa, code a)) (p : (center (Σa, code a)).1 = a₀) include p protected definition encode {a : A} (q : a₀ = a) : code a := (p ⬝ q) ▸ (center (Σa, code a)).2 protected definition decode' {a : A} (c : code a) : a₀ = a := (is_prop.elim ⟨a₀, encode idp⟩ ⟨a, c⟩)..1 protected definition decode {a : A} (c : code a) : a₀ = a := (decode' (encode idp))⁻¹ ⬝ decode' c definition total_space_method (a : A) : (a₀ = a) ≃ code a := begin fapply equiv.MK, { exact encode}, { exact decode}, { intro c, unfold [encode, decode, decode'], induction p, esimp, rewrite [is_prop_elim_self,▸*,+idp_con], apply tr_eq_of_pathover, eapply @sigma.rec_on _ _ (λx, x.2 =[(is_prop.elim ⟨x.1, x.2⟩ ⟨a, c⟩)..1] c) (center (sigma code)), intro a c, apply eq_pr2}, { intro q, induction q, esimp, apply con.left_inv, }, end end definition encode_decode_method {A : Type} (a₀ a : A) (code : A → Type) (c₀ : code a₀) (decode : Π(a : A) (c : code a), a₀ = a) (encode_decode : Π(a : A) (c : code a), c₀ =[decode a c] c) : (a₀ = a) ≃ code a := begin fapply total_space_method, { fapply @is_contr.mk, { exact ⟨a₀, c₀⟩}, { intro p, fapply sigma_eq, apply decode, exact p.2, apply encode_decode}}, { reflexivity} end end eq