import macros definition associative {A : (Type U)} (f : A → A → A) := ∀ x y z, f (f x y) z = f x (f y z) definition is_identity {A : (Type U)} (f : A → A → A) (id : A) := ∀ x, f x id = x definition inverse_ex {A : (Type U)} (f : A → A → A) (id : A) := ∀ x, ∃ y, f x y = id universe s ≥ 1 definition group := sig A : (Type s), sig mul : A → A → A, sig one : A, (associative mul) # (is_identity mul one) # (inverse_ex mul one) definition to_group (A : (Type s)) (mul : A → A → A) (one : A) (H1 : associative mul) (H2 : is_identity mul one) (H3 : inverse_ex mul one) : group := pair A (pair mul (pair one (pair H1 (pair H2 H3)))) -- The following definitions can be generated automatically. definition carrier (g : group) := proj1 g definition G_mul {g : group} : carrier g → carrier g → carrier g := proj1 (proj2 g) infixl 70 * : G_mul definition one {g : group} : carrier g := proj1 (proj2 (proj2 g)) theorem G_assoc {g : group} (x y z : carrier g) : (x * y) * z = x * (y * z) := (proj1 (proj2 (proj2 (proj2 g)))) x y z theorem G_id {g : group} (x : carrier g) : x * one = x := (proj1 (proj2 (proj2 (proj2 (proj2 g))))) x theorem G_inv {g : group} (x : carrier g) : ∃ y, x * y = one := (proj2 (proj2 (proj2 (proj2 (proj2 g))))) x set_opaque group true set_opaque carrier true set_opaque G_mul true set_opaque one true -- First example: the pairwise product of two groups is a group definition product (g1 g2 : group) : group := let S := carrier g1 # carrier g2, -- It would be nice to be able to define local notation, and write _*_ instead of f f := λ x y, pair (proj1 x * proj1 y) (proj2 x * proj2 y), o := pair one one -- this is actually (pair (@one g1) (@one g2)) in have assoc : associative f, -- The elaborator failed to infer the type of the pairs. -- I had to annotate the pairs with their types. from take x y z : S, -- We don't really need to provide S, but it will make the elaborator to work much harder -- since * is an overloaded operator, we also have * as notation for Nat::mul in the context. calc f (f x y) z = (pair ((proj1 x * proj1 y) * proj1 z) ((proj2 x * proj2 y) * proj2 z) : S) : refl (f (f x y) z) ... = (pair (proj1 x * (proj1 y * proj1 z)) ((proj2 x * proj2 y) * proj2 z) : S) : { G_assoc (proj1 x) (proj1 y) (proj1 z) } ... = (pair (proj1 x * (proj1 y * proj1 z)) (proj2 x * (proj2 y * proj2 z)) : S) : { G_assoc (proj2 x) (proj2 y) (proj2 z) } ... = f x (f y z) : refl (f x (f y z)), have id : is_identity f o, from take x : S, calc f x o = (pair (proj1 x * one) (proj2 x * one) : S) : refl (f x o) ... = (pair (proj1 x) (proj2 x * one) : S) : { G_id (proj1 x) } ... = (pair (proj1 x) (proj2 x) : S) : { G_id (proj2 x) } ... = x : pair_proj_eq x, have inv : inverse_ex f o, from take x : S, obtain (y1 : carrier g1) (Hy1 : proj1 x * y1 = one), from G_inv (proj1 x), obtain (y2 : carrier g2) (Hy2 : proj2 x * y2 = one), from G_inv (proj2 x), show ∃ y, f x y = o, from exists_intro (pair y1 y2 : S) (calc f x (pair y1 y2 : S) = (pair (proj1 x * y1) (proj2 x * y2) : S) : refl (f x (pair y1 y2 : S)) ... = (pair one (proj2 x * y2) : S) : { Hy1 } ... = (pair one one : S) : { Hy2 } ... = o : refl o), to_group S f o assoc id inv set_opaque product true -- It would be nice to be able to write x.first and x.second instead of (proj1 x) and (proj2 x) -- Remark: * is overloaded since Lean loads Nat.lean by default. -- The type errors related to * are quite cryptic because of that -- Use 'star' for creating products infixr 50 ⋆ : product -- It would be nice to be able to write (p1 p2 : g1 ⋆ g2 ⋆ g3) check λ (g1 g2 g3 : group) (p1 p2 : carrier (g1 ⋆ g2 ⋆ g3)), p1 * p2 = p2 * p1 theorem group_inhab (g : group) : inhabited (carrier g) := inhabited_intro (@one g) definition inv {g : group} (a : carrier g) : carrier g := ε (group_inhab g) (λ x : carrier g, a * x = one) theorem G_idl {g : group} (x : carrier g) : x * one = x := G_id x theorem G_invl {g : group} (x : carrier g) : x * inv x = one := obtain (y : carrier g) (Hy : x * y = one), from G_inv x, eps_ax (group_inhab g) y Hy set_opaque inv true theorem G_inv_aux {g : group} (x : carrier g) : inv x = (inv x * x) * inv x := symm (calc (inv x * x) * inv x = inv x * (x * inv x) : G_assoc (inv x) x (inv x) ... = inv x * one : { G_invl x } ... = inv x : G_idl (inv x)) theorem G_invr {g : group} (x : carrier g) : inv x * x = one := calc inv x * x = (inv x * x) * one : symm (G_idl (inv x * x)) ... = (inv x * x) * (inv x * inv (inv x)) : { symm (G_invl (inv x)) } ... = ((inv x * x) * inv x) * inv (inv x) : symm (G_assoc (inv x * x) (inv x) (inv (inv x))) ... = (inv x * (x * inv x)) * inv (inv x) : { G_assoc (inv x) x (inv x) } ... = (inv x * one) * inv (inv x) : { G_invl x } ... = (inv x) * inv (inv x) : { G_idl (inv x) } ... = one : G_invl (inv x) theorem G_idr {g : group} (x : carrier g) : one * x = x := calc one * x = (x * inv x) * x : { symm (G_invl x) } ... = x * (inv x * x) : G_assoc x (inv x) x ... = x * one : { G_invr x } ... = x : G_idl x theorem G_inv_inv {g : group} (x : carrier g) : inv (inv x) = x := calc inv (inv x) = inv (inv x) * one : symm (G_idl (inv (inv x))) ... = inv (inv x) * (inv x * x) : { symm (G_invr x) } ... = (inv (inv x) * inv x) * x : symm (G_assoc (inv (inv x)) (inv x) x) ... = one * x : { G_invr (inv x) } ... = x : G_idr x definition commutative {A : (Type U)} (f : A → A → A) := ∀ x y, f x y = f y x definition abelian_group := sig g : group, commutative (@G_mul g) definition ab_to_g (ag : abelian_group) : group := proj1 ag -- Coercions currently only work with opaque types -- We must first define "extract" the information we want, and then -- mark abelian_group as opaque definition AG_comm {g : abelian_group} (x y : carrier (ab_to_g g)) : x * y = y * x := (proj2 g) x y set_opaque abelian_group true set_opaque ab_to_g true set_opaque AG_comm true coercion ab_to_g -- Now, we can use abelian groups where groups are expected. theorem AG_left_comm {g : abelian_group} (x y z : carrier g) : x * (y * z) = y * (x * z) := calc x * (y * z) = (x * y) * z : symm (G_assoc x y z) ... = (y * x) * z : { AG_comm x y } ... = y * (x * z) : G_assoc y x z