/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Declaration of the coequalizer -/ import .quotient_functor types.equiv open quotient eq equiv equiv.ops is_trunc sigma sigma.ops namespace coeq section universe u parameters {A B : Type.{u}} (f g : A → B) inductive coeq_rel : B → B → Type := | Rmk : Π(x : A), coeq_rel (f x) (g x) open coeq_rel local abbreviation R := coeq_rel definition coeq : Type := quotient coeq_rel -- TODO: define this in root namespace definition coeq_i (x : B) : coeq := class_of R x /- cp is the name Coq uses. I don't know what it abbreviates, but at least it's short :-) -/ definition cp (x : A) : coeq_i (f x) = coeq_i (g x) := eq_of_rel coeq_rel (Rmk f g x) protected definition rec {P : coeq → Type} (P_i : Π(x : B), P (coeq_i x)) (Pcp : Π(x : A), P_i (f x) =[cp x] P_i (g x)) (y : coeq) : P y := begin induction y, { apply P_i}, { cases H, apply Pcp} end protected definition rec_on [reducible] {P : coeq → Type} (y : coeq) (P_i : Π(x : B), P (coeq_i x)) (Pcp : Π(x : A), P_i (f x) =[cp x] P_i (g x)) : P y := rec P_i Pcp y theorem rec_cp {P : coeq → Type} (P_i : Π(x : B), P (coeq_i x)) (Pcp : Π(x : A), P_i (f x) =[cp x] P_i (g x)) (x : A) : apdo (rec P_i Pcp) (cp x) = Pcp x := !rec_eq_of_rel protected definition elim {P : Type} (P_i : B → P) (Pcp : Π(x : A), P_i (f x) = P_i (g x)) (y : coeq) : P := rec P_i (λx, pathover_of_eq (Pcp x)) y protected definition elim_on [reducible] {P : Type} (y : coeq) (P_i : B → P) (Pcp : Π(x : A), P_i (f x) = P_i (g x)) : P := elim P_i Pcp y theorem elim_cp {P : Type} (P_i : B → P) (Pcp : Π(x : A), P_i (f x) = P_i (g x)) (x : A) : ap (elim P_i Pcp) (cp x) = Pcp x := begin apply eq_of_fn_eq_fn_inv !(pathover_constant (cp x)), rewrite [▸*,-apdo_eq_pathover_of_eq_ap,↑elim,rec_cp], end protected definition elim_type (P_i : B → Type) (Pcp : Π(x : A), P_i (f x) ≃ P_i (g x)) (y : coeq) : Type := elim P_i (λx, ua (Pcp x)) y protected definition elim_type_on [reducible] (y : coeq) (P_i : B → Type) (Pcp : Π(x : A), P_i (f x) ≃ P_i (g x)) : Type := elim_type P_i Pcp y theorem elim_type_cp (P_i : B → Type) (Pcp : Π(x : A), P_i (f x) ≃ P_i (g x)) (x : A) : transport (elim_type P_i Pcp) (cp x) = Pcp x := by rewrite [tr_eq_cast_ap_fn,↑elim_type,elim_cp];apply cast_ua_fn protected definition rec_prop {P : coeq → Type} [H : Πx, is_prop (P x)] (P_i : Π(x : B), P (coeq_i x)) (y : coeq) : P y := rec P_i (λa, !is_prop.elimo) y protected definition elim_prop {P : Type} [H : is_prop P] (P_i : B → P) (y : coeq) : P := elim P_i (λa, !is_prop.elim) y end end coeq attribute coeq.coeq_i [constructor] attribute coeq.rec coeq.elim [unfold 8] [recursor 8] attribute coeq.elim_type [unfold 7] attribute coeq.rec_on coeq.elim_on [unfold 6] attribute coeq.elim_type_on [unfold 5] /- Flattening -/ namespace coeq section open function universe u parameters {A B : Type.{u}} (f g : A → B) (P_i : B → Type) (Pcp : Πx : A, P_i (f x) ≃ P_i (g x)) local abbreviation P := coeq.elim_type f g P_i Pcp local abbreviation F : sigma (P_i ∘ f) → sigma P_i := λz, ⟨f z.1, z.2⟩ local abbreviation G : sigma (P_i ∘ f) → sigma P_i := λz, ⟨g z.1, Pcp z.1 z.2⟩ local abbreviation Pr : Π⦃b b' : B⦄, coeq_rel f g b b' → P_i b ≃ P_i b' := @coeq_rel.rec A B f g _ Pcp local abbreviation P' := quotient.elim_type P_i Pr protected definition flattening : sigma P ≃ coeq F G := begin have H : Πz, P z ≃ P' z, begin intro z, apply equiv_of_eq, have H1 : coeq.elim_type f g P_i Pcp = quotient.elim_type P_i Pr, begin change quotient.rec P_i (λb b' r, coeq_rel.cases_on r (λx, pathover_of_eq (ua (Pcp x)))) = quotient.rec P_i (λb b' r, pathover_of_eq (ua (coeq_rel.cases_on r Pcp))), have H2 : Π⦃b b' : B⦄ (r : coeq_rel f g b b'), coeq_rel.cases_on r (λx, pathover_of_eq (ua (Pcp x))) = pathover_of_eq (ua (coeq_rel.cases_on r Pcp)) :> P_i b =[eq_of_rel (coeq_rel f g) r] P_i b', begin intros b b' r, cases r, reflexivity end, rewrite (eq_of_homotopy3 H2) end, apply ap10 H1 end, apply equiv.trans (sigma_equiv_sigma_right H), apply equiv.trans !quotient.flattening.flattening_lemma, fapply quotient.equiv, { reflexivity }, { intros bp bp', fapply equiv.MK, { intro r, induction r with b b' r p, induction r with x, exact coeq_rel.Rmk F G ⟨x, p⟩ }, { esimp, intro r, induction r with xp, induction xp with x p, exact quotient.flattening.flattening_rel.mk Pr (coeq_rel.Rmk f g x) p }, { esimp, intro r, induction r with xp, induction xp with x p, reflexivity }, { intro r, induction r with b b' r p, induction r with x, reflexivity } } end end end coeq