/- Copyright (c) 2014 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: algebra.precategory.yoneda Authors: Floris van Doorn -/ import algebra.category.basic .constructions open category functor nat_trans eq is_trunc iso equiv prod variables {C D : Precategory} {F : C ⇒ D} -- structure adjoint (F : C ⇒ D) (G : D ⇒ C) := -- (unit : functor.id ⟹ G ∘f F) -- η -- (counit : F ∘f G ⟹ functor.id) -- ε -- (H : (counit ∘nf F) ∘n (nat_trans_of_eq !functor.assoc) ∘n (F ∘fn unit) -- = nat_trans_of_eq !functor.comp_id_eq_id_comp) -- (K : (G ∘fn counit) ∘n (nat_trans_of_eq !functor.assoc⁻¹) ∘n (unit ∘nf G) -- = nat_trans_of_eq !functor.comp_id_eq_id_comp⁻¹) -- structure is_left_adjoint (F : C ⇒ D) := -- (right_adjoint : D ⇒ C) -- G -- (is_adjoint : adjoint F right_adjoint) structure is_left_adjoint (F : C ⇒ D) := (right_adjoint : D ⇒ C) -- G (unit : functor.id ⟹ right_adjoint ∘f F) -- η (counit : F ∘f right_adjoint ⟹ functor.id) -- ε (H : (counit ∘nf F) ∘n (nat_trans_of_eq !functor.assoc) ∘n (F ∘fn unit) = nat_trans_of_eq !functor.comp_id_eq_id_comp) (K : (right_adjoint ∘fn counit) ∘n (nat_trans_of_eq !functor.assoc⁻¹) ∘n (unit ∘nf right_adjoint) = nat_trans_of_eq !functor.comp_id_eq_id_comp⁻¹) structure is_equivalence (F : C ⇒ D) extends is_left_adjoint F := mk' :: (is_iso_unit : is_iso unit) (is_iso_counit : is_iso counit) structure equivalence (C D : Precategory) := (to_functor : C ⇒ D) (struct : is_equivalence to_functor) --TODO: review and change --TODO: make some or all of these structures? definition faithful (F : C ⇒ D) := Π⦃c c' : C⦄, (Π(f f' : c ⟶ c'), to_fun_hom F f = to_fun_hom F f' → f = f') definition full (F : C ⇒ D) := Π⦃c c' : C⦄ (g : F c ⟶ F c'), Σ(f : c ⟶ c'), F f = g --merely definition fully_faithful (F : C ⇒ D) := Π⦃c c' : C⦄, is_equiv (@to_fun_hom _ _ F c c') definition split_essentially_surjective (F : C ⇒ D) := Π⦃d : D⦄, Σ(c : C), F c ≅ d definition essentially_surjective (F : C ⇒ D) := Π⦃d : D⦄, Σ(c : C), F c ≅ d --merely definition is_weak_equivalence (F : C ⇒ D) := fully_faithful F × essentially_surjective F definition is_isomorphism (F : C ⇒ D) := fully_faithful F × is_equiv (to_fun_ob F) structure isomorphism (C D : Precategory) := (to_functor : C ⇒ D) (struct : is_isomorphism to_functor) namespace category infix `⋍`:25 := equivalence -- \backsimeq infix `≌`:25 := isomorphism -- \backcong --TODO: add shortcuts for Σ⋍≌▹ definition is_hprop_is_left_adjoint {C : Category} {D : Precategory} (F : C ⇒ D) : is_hprop (is_left_adjoint F) := sorry definition is_equivalence.mk (F : C ⇒ D) (G : D ⇒ C) (η : G ∘f F ≅ functor.id) (ε : F ∘f G ≅ functor.id) : is_equivalence F := sorry definition full_of_fully_faithful (H : fully_faithful F) : full F := sorry definition faithful_of_fully_faithful (H : fully_faithful F) : faithful F := sorry definition fully_faithful_of_full_of_faithful (H : faithful F) (K : full F) : fully_faithful F := sorry definition fully_faithful_equiv (F : C ⇒ D) : fully_faithful F ≃ (faithful F × full F) := sorry definition is_equivalence_equiv (F : C ⇒ D) : is_equivalence F ≃ (fully_faithful F × split_essentially_surjective F) := sorry definition is_hprop_is_weak_equivalence (F : C ⇒ D) : is_hprop (is_weak_equivalence F) := sorry definition is_hprop_is_equivalence {C D : Category} (F : C ⇒ D) : is_hprop (is_equivalence F) := sorry definition is_equivalence_equiv_is_weak_equivalence {C D : Category} (F : C ⇒ D) : is_equivalence F ≃ is_weak_equivalence F := sorry definition is_hprop_is_isomorphism (F : C ⇒ D) : is_hprop (is_isomorphism F) := sorry definition is_isomorphism_equiv1 (F : C ⇒ D) : is_equivalence F ≃ Σ(G : D ⇒ C) (η : functor.id = G ∘f F) (ε : F ∘f G = functor.id), sorry ▹ ap (λ(H : C ⇒ C), F ∘f H) η = ap (λ(H : D ⇒ D), H ∘f F) ε⁻¹ := sorry definition is_isomorphism_equiv2 (F : C ⇒ D) : is_equivalence F ≃ Σ/-MERELY-/(G : D ⇒ C), functor.id = G ∘f F × F ∘f G = functor.id := sorry definition is_equivalence_of_isomorphism (H : is_isomorphism F) : is_equivalence F := sorry definition is_isomorphism_of_is_equivalence {C D : Category} {F : C ⇒ D} (H : is_equivalence F) : is_isomorphism F := sorry definition isomorphism_of_eq {C D : Precategory} (p : C = D) : C ≌ D := sorry definition is_equiv_isomorphism_of_eq (C D : Precategory) : is_equiv (@isomorphism_of_eq C D) := sorry definition equivalence_of_eq {C D : Precategory} (p : C = D) : C ⋍ D := sorry definition is_equiv_equivalence_of_eq (C D : Category) : is_equiv (@equivalence_of_eq C D) := sorry end category