/- Copyright (c) 2014 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: algebra.category.basic Author: Floris van Doorn -/ import logic.axioms.funext open eq eq.ops structure category [class] (ob : Type) : Type := (hom : ob → ob → Type) (comp : Π⦃a b c : ob⦄, hom b c → hom a b → hom a c) (ID : Π (a : ob), hom a a) (assoc : Π ⦃a b c d : ob⦄ (h : hom c d) (g : hom b c) (f : hom a b), comp h (comp g f) = comp (comp h g) f) (id_left : Π ⦃a b : ob⦄ (f : hom a b), comp !ID f = f) (id_right : Π ⦃a b : ob⦄ (f : hom a b), comp f !ID = f) attribute category [multiple-instances] namespace category variables {ob : Type} [C : category ob] variables {a b c d : ob} include C definition compose := comp definition id [reducible] {a : ob} : hom a a := ID a infixr `∘` := comp infixl `⟶`:25 := hom -- input ⟶ using \--> (this is a different arrow than \-> (→)) variables {h : hom c d} {g : hom b c} {f : hom a b} {i : hom a a} --the following is the only theorem for which "include C" is necessary if C is a variable (why?) theorem id_compose (a : ob) : (ID a) ∘ id = id := !id_left theorem left_id_unique (H : Π{b} {f : hom b a}, i ∘ f = f) : i = id := calc i = i ∘ id : id_right ... = id : H theorem right_id_unique (H : Π{b} {f : hom a b}, f ∘ i = f) : i = id := calc i = id ∘ i : id_left ... = id : H end category inductive Category : Type := mk : Π (ob : Type), category ob → Category namespace category definition Mk {ob} (C) : Category := Category.mk ob C definition MK (a b c d e f g) : Category := Category.mk a (category.mk b c d e f g) definition objects [coercion] [reducible] (C : Category) : Type := Category.rec (fun c s, c) C definition category_instance [instance] [coercion] [reducible] (C : Category) : category (objects C) := Category.rec (fun c s, s) C end category open category theorem Category.equal (C : Category) : Category.mk C C = C := Category.rec (λ ob c, rfl) C