/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura, Jeremy Avigad, Floris van Doorn -/ prelude import init.datatypes init.reserved_notation -- implication -- ----------- definition imp (a b : Prop) : Prop := a → b -- make c explicit and rename to false.elim theorem false_elim {c : Prop} (H : false) : c := false.rec c H definition trivial := true.intro definition not (a : Prop) := a → false prefix `¬` := not definition absurd {a : Prop} {b : Type} (H1 : a) (H2 : ¬a) : b := false.rec b (H2 H1) theorem mt {a b : Prop} (H1 : a → b) (H2 : ¬b) : ¬a := assume Ha : a, absurd (H1 Ha) H2 -- not -- --- theorem not_false : ¬false := assume H : false, H theorem not_not_intro {a : Prop} (Ha : a) : ¬¬a := assume Hna : ¬a, absurd Ha Hna theorem not_intro {a : Prop} (H : a → false) : ¬a := H theorem not_elim {a : Prop} (H1 : ¬a) (H2 : a) : false := H1 H2 theorem not_implies_left {a b : Prop} (H : ¬(a → b)) : ¬¬a := assume Hna : ¬a, absurd (assume Ha : a, absurd Ha Hna) H theorem not_implies_right {a b : Prop} (H : ¬(a → b)) : ¬b := assume Hb : b, absurd (assume Ha : a, Hb) H -- eq -- -- notation a = b := eq a b definition rfl {A : Type} {a : A} := eq.refl a -- proof irrelevance is built in theorem proof_irrel {a : Prop} (H₁ H₂ : a) : H₁ = H₂ := rfl namespace eq variables {A : Type} variables {a b c a': A} definition drec_on {B : Πa' : A, a = a' → Type} (H₁ : a = a') (H₂ : B a (refl a)) : B a' H₁ := eq.rec (λH₁ : a = a, show B a H₁, from H₂) H₁ H₁ theorem id_refl (H₁ : a = a) : H₁ = (eq.refl a) := rfl theorem irrel (H₁ H₂ : a = b) : H₁ = H₂ := !proof_irrel theorem subst {P : A → Prop} (H₁ : a = b) (H₂ : P a) : P b := rec H₂ H₁ theorem trans (H₁ : a = b) (H₂ : b = c) : a = c := subst H₂ H₁ definition symm (H : a = b) : b = a := subst H (refl a) namespace ops notation H `⁻¹` := symm H --input with \sy or \-1 or \inv notation H1 ⬝ H2 := trans H1 H2 notation H1 ▸ H2 := subst H1 H2 end ops variable {p : Prop} open ops theorem true_elim (H : p = true) : p := H⁻¹ ▸ trivial theorem false_elim (H : p = false) : ¬p := assume Hp, H ▸ Hp end eq calc_subst eq.subst calc_refl eq.refl calc_trans eq.trans calc_symm eq.symm -- ne -- -- definition ne {A : Type} (a b : A) := ¬(a = b) notation a ≠ b := ne a b namespace ne open eq.ops variable {A : Type} variables {a b : A} theorem intro : (a = b → false) → a ≠ b := assume H, H theorem elim : a ≠ b → a = b → false := assume H₁ H₂, H₁ H₂ theorem irrefl : a ≠ a → false := assume H, H rfl theorem symm : a ≠ b → b ≠ a := assume (H : a ≠ b) (H₁ : b = a), H (H₁⁻¹) end ne section open eq.ops variables {A : Type} {a b c : A} theorem false.of_ne : a ≠ a → false := assume H, H rfl theorem ne.of_eq_of_ne : a = b → b ≠ c → a ≠ c := assume H₁ H₂, H₁⁻¹ ▸ H₂ theorem ne.of_ne_of_eq : a ≠ b → b = c → a ≠ c := assume H₁ H₂, H₂ ▸ H₁ end calc_trans ne.of_eq_of_ne calc_trans ne.of_ne_of_eq infixl `==`:50 := heq namespace heq universe variable u variables {A B C : Type.{u}} {a a' : A} {b b' : B} {c : C} definition to_eq (H : a == a') : a = a' := have H₁ : ∀ (Ht : A = A), eq.rec_on Ht a = a, from λ Ht, eq.refl (eq.rec_on Ht a), heq.rec_on H H₁ (eq.refl A) definition elim {A : Type} {a : A} {P : A → Type} {b : A} (H₁ : a == b) (H₂ : P a) : P b := eq.rec_on (to_eq H₁) H₂ theorem drec_on {C : Π {B : Type} (b : B), a == b → Type} (H₁ : a == b) (H₂ : C a (refl a)) : C b H₁ := rec (λ H₁ : a == a, show C a H₁, from H₂) H₁ H₁ theorem subst {P : ∀T : Type, T → Prop} (H₁ : a == b) (H₂ : P A a) : P B b := rec_on H₁ H₂ theorem symm (H : a == b) : b == a := rec_on H (refl a) definition type_eq (H : a == b) : A = B := heq.rec_on H (eq.refl A) theorem from_eq (H : a = a') : a == a' := eq.subst H (refl a) theorem trans (H₁ : a == b) (H₂ : b == c) : a == c := subst H₂ H₁ theorem trans_left (H₁ : a == b) (H₂ : b = b') : a == b' := trans H₁ (from_eq H₂) theorem trans_right (H₁ : a = a') (H₂ : a' == b) : a == b := trans (from_eq H₁) H₂ theorem true_elim {a : Prop} (H : a == true) : a := eq.true_elim (heq.to_eq H) end heq calc_trans heq.trans calc_trans heq.trans_left calc_trans heq.trans_right calc_symm heq.symm theorem eq_rec_heq {A : Type} {P : A → Type} {a a' : A} (H : a = a') (p : P a) : eq.rec_on H p == p := eq.drec_on H !heq.refl section universe variables u v variables {A A' B C : Type.{u}} {P P' : A → Type.{v}} {a a' : A} {b : B} theorem hcongr_fun {f : Π x, P x} {f' : Π x, P' x} (a : A) (H₁ : f == f') (H₂ : P = P') : f a == f' a := have aux : ∀ (f : Π x, P x) (f' : Π x, P x), f == f' → f a == f' a, from take f f' H, heq.to_eq H ▸ heq.refl (f a), (H₂ ▸ aux) f f' H₁ theorem hcongr {P' : A' → Type} {f : Π a, P a} {f' : Π a', P' a'} {a : A} {a' : A'} (Hf : f == f') (HP : P == P') (Ha : a == a') : f a == f' a' := have H1 : ∀ (B P' : A → Type) (f : Π x, P x) (f' : Π x, P' x), f == f' → (λx, P x) == (λx, P' x) → f a == f' a, from take P P' f f' Hf HB, hcongr_fun a Hf (heq.to_eq HB), have H2 : ∀ (B : A → Type) (P' : A' → Type) (f : Π x, P x) (f' : Π x, P' x), f == f' → (λx, P x) == (λx, P' x) → f a == f' a', from heq.subst Ha H1, H2 P P' f f' Hf HP theorem hcongr_arg (f : Πx, P x) {a b : A} (H : a = b) : f a == f b := H ▸ (heq.refl (f a)) end section variables {A : Type} {B : A → Type} {C : Πa, B a → Type} {D : Πa b, C a b → Type} variables {a a' : A} {b : B a} {b' : B a'} {c : C a b} {c' : C a' b'} theorem hcongr_arg2 (f : Πa b, C a b) (Ha : a = a') (Hb : b == b') : f a b == f a' b' := hcongr (hcongr_arg f Ha) (hcongr_arg C Ha) Hb theorem hcongr_arg3 (f : Πa b c, D a b c) (Ha : a = a') (Hb : b == b') (Hc : c == c') : f a b c == f a' b' c' := hcongr (hcongr_arg2 f Ha Hb) (hcongr_arg2 D Ha Hb) Hc end -- and -- --- notation a /\ b := and a b notation a ∧ b := and a b variables {a b c d : Prop} namespace and theorem elim (H₁ : a ∧ b) (H₂ : a → b → c) : c := rec H₂ H₁ definition elim_left (H : a ∧ b) : a := rec (λa b, a) H definition elim_right (H : a ∧ b) : b := rec (λa b, b) H theorem swap (H : a ∧ b) : b ∧ a := intro (elim_right H) (elim_left H) definition not_left (b : Prop) (Hna : ¬a) : ¬(a ∧ b) := assume H : a ∧ b, absurd (elim_left H) Hna definition not_right (a : Prop) {b : Prop} (Hnb : ¬b) : ¬(a ∧ b) := assume H : a ∧ b, absurd (elim_right H) Hnb theorem imp_and (H₁ : a ∧ b) (H₂ : a → c) (H₃ : b → d) : c ∧ d := elim H₁ (assume Ha : a, assume Hb : b, intro (H₂ Ha) (H₃ Hb)) theorem imp_left (H₁ : a ∧ c) (H : a → b) : b ∧ c := elim H₁ (assume Ha : a, assume Hc : c, intro (H Ha) Hc) theorem imp_right (H₁ : c ∧ a) (H : a → b) : c ∧ b := elim H₁ (assume Hc : c, assume Ha : a, intro Hc (H Ha)) end and -- or -- -- notation a `\/` b := or a b notation a ∨ b := or a b namespace or definition inl (Ha : a) : a ∨ b := intro_left b Ha definition inr (Hb : b) : a ∨ b := intro_right a Hb theorem elim (H₁ : a ∨ b) (H₂ : a → c) (H₃ : b → c) : c := rec H₂ H₃ H₁ theorem elim3 (H : a ∨ b ∨ c) (Ha : a → d) (Hb : b → d) (Hc : c → d) : d := elim H Ha (assume H₂, elim H₂ Hb Hc) theorem resolve_right (H₁ : a ∨ b) (H₂ : ¬a) : b := elim H₁ (assume Ha, absurd Ha H₂) (assume Hb, Hb) theorem resolve_left (H₁ : a ∨ b) (H₂ : ¬b) : a := elim H₁ (assume Ha, Ha) (assume Hb, absurd Hb H₂) theorem swap (H : a ∨ b) : b ∨ a := elim H (assume Ha, inr Ha) (assume Hb, inl Hb) definition not_intro (Hna : ¬a) (Hnb : ¬b) : ¬(a ∨ b) := assume H : a ∨ b, or.rec_on H (assume Ha, absurd Ha Hna) (assume Hb, absurd Hb Hnb) theorem imp_or (H₁ : a ∨ b) (H₂ : a → c) (H₃ : b → d) : c ∨ d := elim H₁ (assume Ha : a, inl (H₂ Ha)) (assume Hb : b, inr (H₃ Hb)) theorem imp_or_left (H₁ : a ∨ c) (H : a → b) : b ∨ c := elim H₁ (assume H₂ : a, inl (H H₂)) (assume H₂ : c, inr H₂) theorem imp_or_right (H₁ : c ∨ a) (H : a → b) : c ∨ b := elim H₁ (assume H₂ : c, inl H₂) (assume H₂ : a, inr (H H₂)) end or theorem not_not_em {p : Prop} : ¬¬(p ∨ ¬p) := assume not_em : ¬(p ∨ ¬p), have Hnp : ¬p, from assume Hp : p, absurd (or.inl Hp) not_em, absurd (or.inr Hnp) not_em -- iff -- --- definition iff (a b : Prop) := (a → b) ∧ (b → a) notation a <-> b := iff a b notation a ↔ b := iff a b namespace iff definition def : (a ↔ b) = ((a → b) ∧ (b → a)) := rfl definition intro (H₁ : a → b) (H₂ : b → a) : a ↔ b := and.intro H₁ H₂ definition elim (H₁ : (a → b) → (b → a) → c) (H₂ : a ↔ b) : c := and.rec H₁ H₂ definition elim_left (H : a ↔ b) : a → b := elim (assume H₁ H₂, H₁) H definition mp := @elim_left definition elim_right (H : a ↔ b) : b → a := elim (assume H₁ H₂, H₂) H definition flip_sign (H₁ : a ↔ b) : ¬a ↔ ¬b := intro (assume Hna, mt (elim_right H₁) Hna) (assume Hnb, mt (elim_left H₁) Hnb) definition refl (a : Prop) : a ↔ a := intro (assume H, H) (assume H, H) definition rfl {a : Prop} : a ↔ a := refl a theorem trans (H₁ : a ↔ b) (H₂ : b ↔ c) : a ↔ c := intro (assume Ha, elim_left H₂ (elim_left H₁ Ha)) (assume Hc, elim_right H₁ (elim_right H₂ Hc)) theorem symm (H : a ↔ b) : b ↔ a := intro (assume Hb, elim_right H Hb) (assume Ha, elim_left H Ha) theorem true_elim (H : a ↔ true) : a := mp (symm H) trivial theorem false_elim (H : a ↔ false) : ¬a := assume Ha : a, mp H Ha open eq.ops theorem of_eq {a b : Prop} (H : a = b) : a ↔ b := iff.intro (λ Ha, H ▸ Ha) (λ Hb, H⁻¹ ▸ Hb) end iff calc_refl iff.refl calc_trans iff.trans -- comm and assoc for and / or -- --------------------------- namespace and theorem comm : a ∧ b ↔ b ∧ a := iff.intro (λH, swap H) (λH, swap H) theorem assoc : (a ∧ b) ∧ c ↔ a ∧ (b ∧ c) := iff.intro (assume H, intro (elim_left (elim_left H)) (intro (elim_right (elim_left H)) (elim_right H))) (assume H, intro (intro (elim_left H) (elim_left (elim_right H))) (elim_right (elim_right H))) end and namespace or theorem comm : a ∨ b ↔ b ∨ a := iff.intro (λH, swap H) (λH, swap H) theorem assoc : (a ∨ b) ∨ c ↔ a ∨ (b ∨ c) := iff.intro (assume H, elim H (assume H₁, elim H₁ (assume Ha, inl Ha) (assume Hb, inr (inl Hb))) (assume Hc, inr (inr Hc))) (assume H, elim H (assume Ha, (inl (inl Ha))) (assume H₁, elim H₁ (assume Hb, inl (inr Hb)) (assume Hc, inr Hc))) end or inductive Exists {A : Type} (P : A → Prop) : Prop := intro : ∀ (a : A), P a → Exists P definition exists_intro := @Exists.intro notation `exists` binders `,` r:(scoped P, Exists P) := r notation `∃` binders `,` r:(scoped P, Exists P) := r theorem exists_elim {A : Type} {p : A → Prop} {B : Prop} (H1 : ∃x, p x) (H2 : ∀ (a : A) (H : p a), B) : B := Exists.rec H2 H1 definition exists_unique {A : Type} (p : A → Prop) := ∃x, p x ∧ ∀y, p y → y = x notation `∃!` binders `,` r:(scoped P, exists_unique P) := r theorem exists_unique_intro {A : Type} {p : A → Prop} (w : A) (H1 : p w) (H2 : ∀y, p y → y = w) : ∃!x, p x := exists_intro w (and.intro H1 H2) theorem exists_unique_elim {A : Type} {p : A → Prop} {b : Prop} (H2 : ∃!x, p x) (H1 : ∀x, p x → (∀y, p y → y = x) → b) : b := obtain w Hw, from H2, H1 w (and.elim_left Hw) (and.elim_right Hw) inductive decidable [class] (p : Prop) : Type := inl : p → decidable p, inr : ¬p → decidable p definition true.decidable [instance] : decidable true := decidable.inl trivial definition false.decidable [instance] : decidable false := decidable.inr not_false namespace decidable variables {p q : Prop} definition rec_on_true [H : decidable p] {H1 : p → Type} {H2 : ¬p → Type} (H3 : p) (H4 : H1 H3) : rec_on H H1 H2 := rec_on H (λh, H4) (λh, false.rec _ (h H3)) definition rec_on_false [H : decidable p] {H1 : p → Type} {H2 : ¬p → Type} (H3 : ¬p) (H4 : H2 H3) : rec_on H H1 H2 := rec_on H (λh, false.rec _ (H3 h)) (λh, H4) definition by_cases {q : Type} [C : decidable p] (Hpq : p → q) (Hnpq : ¬p → q) : q := rec_on C (assume Hp, Hpq Hp) (assume Hnp, Hnpq Hnp) theorem em (p : Prop) [H : decidable p] : p ∨ ¬p := by_cases (λ Hp, or.inl Hp) (λ Hnp, or.inr Hnp) theorem by_contradiction [Hp : decidable p] (H : ¬p → false) : p := by_cases (assume H1 : p, H1) (assume H1 : ¬p, false_elim (H H1)) definition decidable_iff_equiv (Hp : decidable p) (H : p ↔ q) : decidable q := rec_on Hp (assume Hp : p, inl (iff.elim_left H Hp)) (assume Hnp : ¬p, inr (iff.elim_left (iff.flip_sign H) Hnp)) definition decidable_eq_equiv (Hp : decidable p) (H : p = q) : decidable q := decidable_iff_equiv Hp (iff.of_eq H) end decidable section variables {p q : Prop} open decidable (rec_on inl inr) definition and.decidable [instance] (Hp : decidable p) (Hq : decidable q) : decidable (p ∧ q) := rec_on Hp (assume Hp : p, rec_on Hq (assume Hq : q, inl (and.intro Hp Hq)) (assume Hnq : ¬q, inr (and.not_right p Hnq))) (assume Hnp : ¬p, inr (and.not_left q Hnp)) definition or.decidable [instance] (Hp : decidable p) (Hq : decidable q) : decidable (p ∨ q) := rec_on Hp (assume Hp : p, inl (or.inl Hp)) (assume Hnp : ¬p, rec_on Hq (assume Hq : q, inl (or.inr Hq)) (assume Hnq : ¬q, inr (or.not_intro Hnp Hnq))) definition not.decidable [instance] (Hp : decidable p) : decidable (¬p) := rec_on Hp (assume Hp, inr (not_not_intro Hp)) (assume Hnp, inl Hnp) definition implies.decidable [instance] (Hp : decidable p) (Hq : decidable q) : decidable (p → q) := rec_on Hp (assume Hp : p, rec_on Hq (assume Hq : q, inl (assume H, Hq)) (assume Hnq : ¬q, inr (assume H : p → q, absurd (H Hp) Hnq))) (assume Hnp : ¬p, inl (assume Hp, absurd Hp Hnp)) definition iff.decidable [instance] (Hp : decidable p) (Hq : decidable q) : decidable (p ↔ q) := _ end definition decidable_pred {A : Type} (R : A → Prop) := Π (a : A), decidable (R a) definition decidable_rel {A : Type} (R : A → A → Prop) := Π (a b : A), decidable (R a b) definition decidable_eq (A : Type) := decidable_rel (@eq A) inductive inhabited [class] (A : Type) : Type := mk : A → inhabited A namespace inhabited protected definition destruct {A : Type} {B : Type} (H1 : inhabited A) (H2 : A → B) : B := inhabited.rec H2 H1 definition Prop_inhabited [instance] : inhabited Prop := mk true definition fun_inhabited [instance] (A : Type) {B : Type} (H : inhabited B) : inhabited (A → B) := destruct H (λb, mk (λa, b)) definition dfun_inhabited [instance] (A : Type) {B : A → Type} (H : Πx, inhabited (B x)) : inhabited (Πx, B x) := mk (λa, destruct (H a) (λb, b)) definition default (A : Type) [H : inhabited A] : A := destruct H (take a, a) end inhabited inductive nonempty [class] (A : Type) : Prop := intro : A → nonempty A namespace nonempty protected definition elim {A : Type} {B : Prop} (H1 : nonempty A) (H2 : A → B) : B := rec H2 H1 theorem inhabited_imp_nonempty [instance] {A : Type} (H : inhabited A) : nonempty A := intro (inhabited.default A) end nonempty definition ite (c : Prop) [H : decidable c] {A : Type} (t e : A) : A := decidable.rec_on H (λ Hc, t) (λ Hnc, e) notation `if` c `then` t:45 `else` e:45 := ite c t e definition if_pos {c : Prop} [H : decidable c] (Hc : c) {A : Type} {t e : A} : (if c then t else e) = t := decidable.rec (λ Hc : c, eq.refl (@ite c (decidable.inl Hc) A t e)) (λ Hnc : ¬c, absurd Hc Hnc) H definition if_neg {c : Prop} [H : decidable c] (Hnc : ¬c) {A : Type} {t e : A} : (if c then t else e) = e := decidable.rec (λ Hc : c, absurd Hc Hnc) (λ Hnc : ¬c, eq.refl (@ite c (decidable.inr Hnc) A t e)) H definition if_t_t (c : Prop) [H : decidable c] {A : Type} (t : A) : (if c then t else t) = t := decidable.rec (λ Hc : c, eq.refl (@ite c (decidable.inl Hc) A t t)) (λ Hnc : ¬c, eq.refl (@ite c (decidable.inr Hnc) A t t)) H definition if_true {A : Type} (t e : A) : (if true then t else e) = t := if_pos trivial definition if_false {A : Type} (t e : A) : (if false then t else e) = e := if_neg not_false theorem if_cond_congr {c₁ c₂ : Prop} [H₁ : decidable c₁] [H₂ : decidable c₂] (Heq : c₁ ↔ c₂) {A : Type} (t e : A) : (if c₁ then t else e) = (if c₂ then t else e) := decidable.rec_on H₁ (λ Hc₁ : c₁, decidable.rec_on H₂ (λ Hc₂ : c₂, if_pos Hc₁ ⬝ (if_pos Hc₂)⁻¹) (λ Hnc₂ : ¬c₂, absurd (iff.elim_left Heq Hc₁) Hnc₂)) (λ Hnc₁ : ¬c₁, decidable.rec_on H₂ (λ Hc₂ : c₂, absurd (iff.elim_right Heq Hc₂) Hnc₁) (λ Hnc₂ : ¬c₂, if_neg Hnc₁ ⬝ (if_neg Hnc₂)⁻¹)) theorem if_congr_aux {c₁ c₂ : Prop} [H₁ : decidable c₁] [H₂ : decidable c₂] {A : Type} {t₁ t₂ e₁ e₂ : A} (Hc : c₁ ↔ c₂) (Ht : t₁ = t₂) (He : e₁ = e₂) : (if c₁ then t₁ else e₁) = (if c₂ then t₂ else e₂) := Ht ▸ He ▸ (if_cond_congr Hc t₁ e₁) theorem if_congr {c₁ c₂ : Prop} [H₁ : decidable c₁] {A : Type} {t₁ t₂ e₁ e₂ : A} (Hc : c₁ ↔ c₂) (Ht : t₁ = t₂) (He : e₁ = e₂) : (if c₁ then t₁ else e₁) = (@ite c₂ (decidable.decidable_iff_equiv H₁ Hc) A t₂ e₂) := have H2 [visible] : decidable c₂, from (decidable.decidable_iff_equiv H₁ Hc), if_congr_aux Hc Ht He -- We use "dependent" if-then-else to be able to communicate the if-then-else condition -- to the branches definition dite (c : Prop) [H : decidable c] {A : Type} (t : c → A) (e : ¬ c → A) : A := decidable.rec_on H (λ Hc, t Hc) (λ Hnc, e Hnc) notation `dif` c `then` t:45 `else` e:45 := dite c t e definition dif_pos {c : Prop} [H : decidable c] (Hc : c) {A : Type} {t : c → A} {e : ¬ c → A} : (dif c then t else e) = t Hc := decidable.rec (λ Hc : c, eq.refl (@dite c (decidable.inl Hc) A t e)) (λ Hnc : ¬c, absurd Hc Hnc) H definition dif_neg {c : Prop} [H : decidable c] (Hnc : ¬c) {A : Type} {t : c → A} {e : ¬ c → A} : (dif c then t else e) = e Hnc := decidable.rec (λ Hc : c, absurd Hc Hnc) (λ Hnc : ¬c, eq.refl (@dite c (decidable.inr Hnc) A t e)) H -- Remark: dite and ite are "definitionally equal" when we ignore the proofs. theorem dite_ite_eq (c : Prop) [H : decidable c] {A : Type} (t : A) (e : A) : dite c (λh, t) (λh, e) = ite c t e := rfl