-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Authors: Leonardo de Moura, Jeremy Avigad import logic hilbert funext using eq_proofs -- Diaconescu’s theorem -- Show that Excluded middle follows from -- Hilbert's choice operator, function extensionality and Prop extensionality section hypothesis propext {a b : Prop} : (a → b) → (b → a) → a = b parameter p : Prop definition u [private] := epsilon (λ x, x = true ∨ p) definition v [private] := epsilon (λ x, x = false ∨ p) lemma u_def [private] : u = true ∨ p := epsilon_ax (exists_intro true (or_inl (refl true))) lemma v_def [private] : v = false ∨ p := epsilon_ax (exists_intro false (or_inl (refl false))) lemma uv_implies_p [private] : ¬(u = v) ∨ p := or_elim u_def (assume Hut : u = true, or_elim v_def (assume Hvf : v = false, have Hne : ¬(u = v), from Hvf⁻¹ ▸ Hut⁻¹ ▸ true_ne_false, or_inl Hne) (assume Hp : p, or_inr Hp)) (assume Hp : p, or_inr Hp) lemma p_implies_uv [private] : p → u = v := assume Hp : p, have Hpred : (λ x, x = true ∨ p) = (λ x, x = false ∨ p), from funext (take x : Prop, have Hl : (x = true ∨ p) → (x = false ∨ p), from assume A, or_inr Hp, have Hr : (x = false ∨ p) → (x = true ∨ p), from assume A, or_inr Hp, show (x = true ∨ p) = (x = false ∨ p), from propext Hl Hr), show u = v, from Hpred ▸ (refl (epsilon (λ x, x = true ∨ p))) theorem em : p ∨ ¬p := have H : ¬(u = v) → ¬p, from contrapos p_implies_uv, or_elim uv_implies_p (assume Hne : ¬(u = v), or_inr (H Hne)) (assume Hp : p, or_inl Hp) end