-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura import logic.wf data.nat.basic namespace well_founded -- This is an auxiliary definition that useful for generating a new "proof" for (well_founded R) -- that allows us to use well_founded.fix and execute the definitions up to k nested recursive -- calls without "computing" with the proofs in Hwf. definition intro_k {A : Type} {R : A → A → Prop} (Hwf : well_founded R) (k : nat) : well_founded R := well_founded.intro (nat.rec_on k (λ n : A, well_founded.apply Hwf n) (λ (k' : nat) (f : Πa, acc R a), (λ n : A, acc.intro n (λ y H, f y)))) end well_founded