-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Jeremy Avigad -- Ported from Coq HoTT import .path open path -- Equivalences -- ------------ definition Sect {A B : Type} (s : A → B) (r : B → A) := Πx : A, r (s x) ≈ x -- -- TODO: need better means of declaring structures -- -- TODO: note that Coq allows projections to be declared to be coercions on the fly -- Structure IsEquiv inductive IsEquiv {A B : Type} (f : A → B) := IsEquiv_mk : Π (equiv_inv : B → A) (eisretr : Sect equiv_inv f) (eissect : Sect f equiv_inv) (eisadj : Πx, eisretr (f x) ≈ ap f (eissect x)), IsEquiv f definition equiv_inv {A B : Type} {f : A → B} (H : IsEquiv f) : B → A := IsEquiv.rec (λequiv_inv eisretr eissect eisadj, equiv_inv) H -- TODO: note: does not type check without giving the type definition eisretr {A B : Type} {f : A → B} (H : IsEquiv f) : Sect (equiv_inv H) f := IsEquiv.rec (λequiv_inv eisretr eissect eisadj, eisretr) H definition eissect {A B : Type} {f : A → B} (H : IsEquiv f) : Sect f (equiv_inv H) := IsEquiv.rec (λequiv_inv eisretr eissect eisadj, eissect) H definition eisadj {A B : Type} {f : A → B} (H : IsEquiv f) : Πx, eisretr H (f x) ≈ ap f (eissect H x) := IsEquiv.rec (λequiv_inv eisretr eissect eisadj, eisadj) H -- Structure Equiv inductive Equiv (A B : Type) : Type := Equiv_mk : Π (equiv_fun : A → B) (equiv_isequiv : IsEquiv equiv_fun), Equiv A B definition equiv_fun [coercion] {A B : Type} (e : Equiv A B) : A → B := Equiv.rec (λequiv_fun equiv_isequiv, equiv_fun) e definition equiv_isequiv [coercion] {A B : Type} (e : Equiv A B) : IsEquiv (equiv_fun e) := Equiv.rec (λequiv_fun equiv_isequiv, equiv_isequiv) e -- TODO: better symbol infix `<~>`:25 := Equiv notation H ⁻¹ := equiv_inv H