import data.nat open nat eq.ops algebra theorem lcm_dvd {m n k : nat} (H1 : m ∣ k) (H2 : (n ∣ k)) : (lcm m n ∣ k) := match eq_zero_or_pos k with | @or.inl _ _ kzero := begin rewrite kzero, apply dvd_zero end | @or.inr _ _ kpos := obtain (p : nat) (km : k = m * p), from exists_eq_mul_right_of_dvd H1, obtain (q : nat) (kn : k = n * q), from exists_eq_mul_right_of_dvd H2, begin have mpos : m > 0, from pos_of_dvd_of_pos H1 kpos, have npos : n > 0, from pos_of_dvd_of_pos H2 kpos, have gcd_pos : gcd m n > 0, from gcd_pos_of_pos_left n mpos, have ppos : p > 0, begin apply pos_of_mul_pos_left, apply (eq.rec_on km), exact kpos end, have qpos : q > 0, from pos_of_mul_pos_left (kn ▸ kpos), have H3 : p * q * (m * n * gcd p q) = p * q * (gcd m n * k), begin apply sorry end, have H4 : m * n * gcd p q = gcd m n * k, from !eq_of_mul_eq_mul_left (mul_pos ppos qpos) H3, have H5 : gcd m n * (lcm m n * gcd p q) = gcd m n * k, begin rewrite [-mul.assoc, gcd_mul_lcm], exact H4 end, have H6 : lcm m n * gcd p q = k, from !eq_of_mul_eq_mul_left gcd_pos H5, exact (dvd.intro H6) end end