/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: algebra.ordered_ring Authors: Jeremy Avigad Here an "ordered_ring" is partially ordered ring, which is ordered with respect to both a weak order and an associated strict order. Our numeric structures (int, rat, and real) will be instances of "linear_ordered_comm_ring". This development is modeled after Isabelle's library. -/ import algebra.ordered_group algebra.ring open eq eq.ops namespace algebra variable {A : Type} structure ordered_semiring [class] (A : Type) extends has_mul A, has_zero A, has_lt A, -- TODO: remove hack for improving performance semiring A, ordered_cancel_comm_monoid A := (mul_le_mul_of_nonneg_left: ∀a b c, le a b → le zero c → le (mul c a) (mul c b)) (mul_le_mul_of_nonneg_right: ∀a b c, le a b → le zero c → le (mul a c) (mul b c)) (mul_lt_mul_of_pos_left: ∀a b c, lt a b → lt zero c → lt (mul c a) (mul c b)) (mul_lt_mul_of_pos_right: ∀a b c, lt a b → lt zero c → lt (mul a c) (mul b c)) section variable [s : ordered_semiring A] variables (a b c d e : A) include s theorem mul_le_mul_of_nonneg_left {a b c : A} (Hab : a ≤ b) (Hc : 0 ≤ c) : c * a ≤ c * b := !ordered_semiring.mul_le_mul_of_nonneg_left Hab Hc theorem mul_le_mul_of_nonneg_right {a b c : A} (Hab : a ≤ b) (Hc : 0 ≤ c) : a * c ≤ b * c := !ordered_semiring.mul_le_mul_of_nonneg_right Hab Hc -- TODO: there are four variations, depending on which variables we assume to be nonneg theorem mul_le_mul {a b c d : A} (Hac : a ≤ c) (Hbd : b ≤ d) (nn_b : 0 ≤ b) (nn_c : 0 ≤ c) : a * b ≤ c * d := calc a * b ≤ c * b : mul_le_mul_of_nonneg_right Hac nn_b ... ≤ c * d : mul_le_mul_of_nonneg_left Hbd nn_c theorem mul_nonneg {a b : A} (Ha : a ≥ 0) (Hb : b ≥ 0) : a * b ≥ 0 := have H : 0 * b ≤ a * b, from mul_le_mul_of_nonneg_right Ha Hb, !zero_mul ▸ H theorem mul_nonpos_of_nonneg_of_nonpos {a b : A} (Ha : a ≥ 0) (Hb : b ≤ 0) : a * b ≤ 0 := have H : a * b ≤ a * 0, from mul_le_mul_of_nonneg_left Hb Ha, !mul_zero ▸ H theorem mul_nonpos_of_nonpos_of_nonneg {a b : A} (Ha : a ≤ 0) (Hb : b ≥ 0) : a * b ≤ 0 := have H : a * b ≤ 0 * b, from mul_le_mul_of_nonneg_right Ha Hb, !zero_mul ▸ H theorem mul_lt_mul_of_pos_left {a b c : A} (Hab : a < b) (Hc : 0 < c) : c * a < c * b := !ordered_semiring.mul_lt_mul_of_pos_left Hab Hc theorem mul_lt_mul_of_pos_right {a b c : A} (Hab : a < b) (Hc : 0 < c) : a * c < b * c := !ordered_semiring.mul_lt_mul_of_pos_right Hab Hc -- TODO: once again, there are variations theorem mul_lt_mul {a b c d : A} (Hac : a < c) (Hbd : b ≤ d) (pos_b : 0 < b) (nn_c : 0 ≤ c) : a * b < c * d := calc a * b < c * b : mul_lt_mul_of_pos_right Hac pos_b ... ≤ c * d : mul_le_mul_of_nonneg_left Hbd nn_c theorem mul_pos {a b : A} (Ha : a > 0) (Hb : b > 0) : a * b > 0 := have H : 0 * b < a * b, from mul_lt_mul_of_pos_right Ha Hb, !zero_mul ▸ H theorem mul_neg_of_pos_of_neg {a b : A} (Ha : a > 0) (Hb : b < 0) : a * b < 0 := have H : a * b < a * 0, from mul_lt_mul_of_pos_left Hb Ha, !mul_zero ▸ H theorem mul_neg_of_neg_of_pos {a b : A} (Ha : a < 0) (Hb : b > 0) : a * b < 0 := have H : a * b < 0 * b, from mul_lt_mul_of_pos_right Ha Hb, !zero_mul ▸ H end structure linear_ordered_semiring [class] (A : Type) extends ordered_semiring A, linear_strong_order_pair A section variable [s : linear_ordered_semiring A] variables {a b c : A} include s theorem lt_of_mul_lt_mul_left (H : c * a < c * b) (Hc : c ≥ 0) : a < b := lt_of_not_le (assume H1 : b ≤ a, have H2 : c * b ≤ c * a, from mul_le_mul_of_nonneg_left H1 Hc, not_lt_of_le H2 H) theorem lt_of_mul_lt_mul_right (H : a * c < b * c) (Hc : c ≥ 0) : a < b := lt_of_not_le (assume H1 : b ≤ a, have H2 : b * c ≤ a * c, from mul_le_mul_of_nonneg_right H1 Hc, not_lt_of_le H2 H) theorem le_of_mul_le_mul_left (H : c * a ≤ c * b) (Hc : c > 0) : a ≤ b := le_of_not_lt (assume H1 : b < a, have H2 : c * b < c * a, from mul_lt_mul_of_pos_left H1 Hc, not_le_of_lt H2 H) theorem le_of_mul_le_mul_right (H : a * c ≤ b * c) (Hc : c > 0) : a ≤ b := le_of_not_lt (assume H1 : b < a, have H2 : b * c < a * c, from mul_lt_mul_of_pos_right H1 Hc, not_le_of_lt H2 H) theorem pos_of_mul_pos_left (H : 0 < a * b) (H1 : 0 ≤ a) : 0 < b := lt_of_not_le (assume H2 : b ≤ 0, have H3 : a * b ≤ 0, from mul_nonpos_of_nonneg_of_nonpos H1 H2, not_lt_of_le H3 H) theorem pos_of_mul_pos_right (H : 0 < a * b) (H1 : 0 ≤ b) : 0 < a := lt_of_not_le (assume H2 : a ≤ 0, have H3 : a * b ≤ 0, from mul_nonpos_of_nonpos_of_nonneg H2 H1, not_lt_of_le H3 H) end structure ordered_ring [class] (A : Type) extends ring A, ordered_comm_group A := (mul_nonneg : ∀a b, le zero a → le zero b → le zero (mul a b)) (mul_pos : ∀a b, lt zero a → lt zero b → lt zero (mul a b)) theorem ordered_ring.mul_le_mul_of_nonneg_left [s : ordered_ring A] {a b c : A} (Hab : a ≤ b) (Hc : 0 ≤ c) : c * a ≤ c * b := have H1 : 0 ≤ b - a, from iff.elim_right !sub_nonneg_iff_le Hab, have H2 : 0 ≤ c * (b - a), from ordered_ring.mul_nonneg _ _ Hc H1, iff.mp !sub_nonneg_iff_le (!mul_sub_left_distrib ▸ H2) theorem ordered_ring.mul_le_mul_of_nonneg_right [s : ordered_ring A] {a b c : A} (Hab : a ≤ b) (Hc : 0 ≤ c) : a * c ≤ b * c := have H1 : 0 ≤ b - a, from iff.elim_right !sub_nonneg_iff_le Hab, have H2 : 0 ≤ (b - a) * c, from ordered_ring.mul_nonneg _ _ H1 Hc, iff.mp !sub_nonneg_iff_le (!mul_sub_right_distrib ▸ H2) theorem ordered_ring.mul_lt_mul_of_pos_left [s : ordered_ring A] {a b c : A} (Hab : a < b) (Hc : 0 < c) : c * a < c * b := have H1 : 0 < b - a, from iff.elim_right !sub_pos_iff_lt Hab, have H2 : 0 < c * (b - a), from ordered_ring.mul_pos _ _ Hc H1, iff.mp !sub_pos_iff_lt (!mul_sub_left_distrib ▸ H2) theorem ordered_ring.mul_lt_mul_of_pos_right [s : ordered_ring A] {a b c : A} (Hab : a < b) (Hc : 0 < c) : a * c < b * c := have H1 : 0 < b - a, from iff.elim_right !sub_pos_iff_lt Hab, have H2 : 0 < (b - a) * c, from ordered_ring.mul_pos _ _ H1 Hc, iff.mp !sub_pos_iff_lt (!mul_sub_right_distrib ▸ H2) definition ordered_ring.to_ordered_semiring [instance] [coercion] [s : ordered_ring A] : ordered_semiring A := ⦃ ordered_semiring, s, mul_zero := mul_zero, zero_mul := zero_mul, add_left_cancel := @add.left_cancel A s, add_right_cancel := @add.right_cancel A s, le_of_add_le_add_left := @le_of_add_le_add_left A s, mul_le_mul_of_nonneg_left := @ordered_ring.mul_le_mul_of_nonneg_left A s, mul_le_mul_of_nonneg_right := @ordered_ring.mul_le_mul_of_nonneg_right A s, mul_lt_mul_of_pos_left := @ordered_ring.mul_lt_mul_of_pos_left A s, mul_lt_mul_of_pos_right := @ordered_ring.mul_lt_mul_of_pos_right A s ⦄ section variable [s : ordered_ring A] variables {a b c : A} include s theorem mul_le_mul_of_nonpos_left (H : b ≤ a) (Hc : c ≤ 0) : c * a ≤ c * b := have Hc' : -c ≥ 0, from iff.mp' !neg_nonneg_iff_nonpos Hc, have H1 : -c * b ≤ -c * a, from mul_le_mul_of_nonneg_left H Hc', have H2 : -(c * b) ≤ -(c * a), from !neg_mul_eq_neg_mul⁻¹ ▸ !neg_mul_eq_neg_mul⁻¹ ▸ H1, iff.mp !neg_le_neg_iff_le H2 theorem mul_le_mul_of_nonpos_right (H : b ≤ a) (Hc : c ≤ 0) : a * c ≤ b * c := have Hc' : -c ≥ 0, from iff.mp' !neg_nonneg_iff_nonpos Hc, have H1 : b * -c ≤ a * -c, from mul_le_mul_of_nonneg_right H Hc', have H2 : -(b * c) ≤ -(a * c), from !neg_mul_eq_mul_neg⁻¹ ▸ !neg_mul_eq_mul_neg⁻¹ ▸ H1, iff.mp !neg_le_neg_iff_le H2 theorem mul_nonneg_of_nonpos_of_nonpos (Ha : a ≤ 0) (Hb : b ≤ 0) : 0 ≤ a * b := !zero_mul ▸ mul_le_mul_of_nonpos_right Ha Hb theorem mul_lt_mul_of_neg_left (H : b < a) (Hc : c < 0) : c * a < c * b := have Hc' : -c > 0, from iff.mp' !neg_pos_iff_neg Hc, have H1 : -c * b < -c * a, from mul_lt_mul_of_pos_left H Hc', have H2 : -(c * b) < -(c * a), from !neg_mul_eq_neg_mul⁻¹ ▸ !neg_mul_eq_neg_mul⁻¹ ▸ H1, iff.mp !neg_lt_neg_iff_lt H2 theorem mul_lt_mul_of_neg_right (H : b < a) (Hc : c < 0) : a * c < b * c := have Hc' : -c > 0, from iff.mp' !neg_pos_iff_neg Hc, have H1 : b * -c < a * -c, from mul_lt_mul_of_pos_right H Hc', have H2 : -(b * c) < -(a * c), from !neg_mul_eq_mul_neg⁻¹ ▸ !neg_mul_eq_mul_neg⁻¹ ▸ H1, iff.mp !neg_lt_neg_iff_lt H2 theorem mul_pos_of_neg_of_neg (Ha : a < 0) (Hb : b < 0) : 0 < a * b := !zero_mul ▸ mul_lt_mul_of_neg_right Ha Hb end -- TODO: we can eliminate mul_pos_of_pos, but now it is not worth the effort to redeclare the -- class instance structure linear_ordered_ring [class] (A : Type) extends ordered_ring A, linear_strong_order_pair A -- print fields linear_ordered_semiring definition linear_ordered_ring.to_linear_ordered_semiring [instance] [coercion] [s : linear_ordered_ring A] : linear_ordered_semiring A := ⦃ linear_ordered_semiring, s, mul_zero := mul_zero, zero_mul := zero_mul, add_left_cancel := @add.left_cancel A s, add_right_cancel := @add.right_cancel A s, le_of_add_le_add_left := @le_of_add_le_add_left A s, mul_le_mul_of_nonneg_left := @mul_le_mul_of_nonneg_left A s, mul_le_mul_of_nonneg_right := @mul_le_mul_of_nonneg_right A s, mul_lt_mul_of_pos_left := @mul_lt_mul_of_pos_left A s, mul_lt_mul_of_pos_right := @mul_lt_mul_of_pos_right A s, le_total := linear_ordered_ring.le_total ⦄ structure linear_ordered_comm_ring [class] (A : Type) extends linear_ordered_ring A, comm_monoid A theorem linear_ordered_comm_ring.eq_zero_or_eq_zero_of_mul_eq_zero [s : linear_ordered_comm_ring A] {a b : A} (H : a * b = 0) : a = 0 ∨ b = 0 := lt.by_cases (assume Ha : 0 < a, lt.by_cases (assume Hb : 0 < b, absurd (H ▸ show 0 < a * b, from mul_pos Ha Hb) (lt.irrefl 0)) (assume Hb : 0 = b, or.inr (Hb⁻¹)) (assume Hb : 0 > b, absurd (H ▸ show 0 > a * b, from mul_neg_of_pos_of_neg Ha Hb) (lt.irrefl 0))) (assume Ha : 0 = a, or.inl (Ha⁻¹)) (assume Ha : 0 > a, lt.by_cases (assume Hb : 0 < b, absurd (H ▸ show 0 > a * b, from mul_neg_of_neg_of_pos Ha Hb) (lt.irrefl 0)) (assume Hb : 0 = b, or.inr (Hb⁻¹)) (assume Hb : 0 > b, absurd (H ▸ show 0 < a * b, from mul_pos_of_neg_of_neg Ha Hb) (lt.irrefl 0))) -- Linearity implies no zero divisors. Doesn't need commutativity. definition linear_ordered_comm_ring.to_integral_domain [instance] [coercion] [s: linear_ordered_comm_ring A] : integral_domain A := ⦃ integral_domain, s, eq_zero_or_eq_zero_of_mul_eq_zero := @linear_ordered_comm_ring.eq_zero_or_eq_zero_of_mul_eq_zero A s ⦄ section variable [s : linear_ordered_ring A] variables (a b c : A) include s theorem mul_self_nonneg : a * a ≥ 0 := or.elim (le.total 0 a) (assume H : a ≥ 0, mul_nonneg H H) (assume H : a ≤ 0, mul_nonneg_of_nonpos_of_nonpos H H) theorem zero_le_one : 0 ≤ 1 := one_mul 1 ▸ mul_self_nonneg 1 theorem zero_lt_one : 0 < 1 := lt_of_le_of_ne zero_le_one zero_ne_one theorem pos_and_pos_or_neg_and_neg_of_mul_pos {a b : A} (Hab : a * b > 0) : (a > 0 ∧ b > 0) ∨ (a < 0 ∧ b < 0) := lt.by_cases (assume Ha : 0 < a, lt.by_cases (assume Hb : 0 < b, or.inl (and.intro Ha Hb)) (assume Hb : 0 = b, absurd (!mul_zero ▸ Hb⁻¹ ▸ Hab) (lt.irrefl 0)) (assume Hb : b < 0, absurd Hab (lt.asymm (mul_neg_of_pos_of_neg Ha Hb)))) (assume Ha : 0 = a, absurd (!zero_mul ▸ Ha⁻¹ ▸ Hab) (lt.irrefl 0)) (assume Ha : a < 0, lt.by_cases (assume Hb : 0 < b, absurd Hab (lt.asymm (mul_neg_of_neg_of_pos Ha Hb))) (assume Hb : 0 = b, absurd (!mul_zero ▸ Hb⁻¹ ▸ Hab) (lt.irrefl 0)) (assume Hb : b < 0, or.inr (and.intro Ha Hb))) end /- Still left to do: Isabelle's library has all kinds of cancelation rules for the simplifier, search on mult_le_cancel_right1 in Rings.thy. Properties of abs, sgn, and dvd. Multiplication and one, starting with mult_right_le_one_le. -/ end algebra