import data.list open nat list context parameter {A : Type} parameter (p : A → Prop) parameter [H : decidable_pred p] include H definition filter : list A → list A, filter nil := nil, filter (a :: l) := if p a then a :: filter l else filter l theorem filter_nil : filter nil = nil := rfl theorem filter_cons (a : A) (l : list A) : filter (a :: l) = if p a then a :: filter l else filter l := rfl open eq.ops theorem filter_cons_of_pos {a : A} (l : list A) (h : p a) : filter (a :: l) = a :: filter l := if_pos h ▸ filter_cons a l theorem filter_cons_of_neg {a : A} (l : list A) (h : ¬ p a) : filter (a :: l) = filter l := if_neg h ▸ filter_cons a l end check @filter check @filter_cons_of_pos check @filter_cons_of_neg