open nat inductive tree (A : Type) := leaf : A → tree A, node : tree_list A → tree A with tree_list := nil : tree_list A, cons : tree A → tree_list A → tree_list A namespace tree open tree_list definition size {A : Type} : tree A → nat with size_l : tree_list A → nat, size (leaf a) := 1, size (node l) := size_l l, size_l !nil := 0, size_l (cons t l) := size t + size_l l variables {A : Type} theorem size_leaf (a : A) : size (leaf a) = 1 := rfl theorem size_node (l : tree_list A) : size (node l) = size_l l := rfl theorem size_l_nil : size_l (nil A) = 0 := rfl theorem size_l_cons (t : tree A) (l : tree_list A) : size_l (cons t l) = size t + size_l l := rfl definition eq_tree {A : Type} : tree A → tree A → Prop with eq_tree_list : tree_list A → tree_list A → Prop, eq_tree (leaf a₁) (leaf a₂) := a₁ = a₂, eq_tree (node l₁) (node l₂) := eq_tree_list l₁ l₂, eq_tree _ _ := false, eq_tree_list !nil !nil := true, eq_tree_list (cons t₁ l₁) (cons t₂ l₂) := eq_tree t₁ t₂ ∧ eq_tree_list l₁ l₂, eq_tree_list _ _ := false theorem eq_tree_leaf (a₁ a₂ : A) : eq_tree (leaf a₁) (leaf a₂) = (a₁ = a₂) := rfl theorem eq_tree_node (l₁ l₂ : tree_list A) : eq_tree (node l₁) (node l₂) = eq_tree_list l₁ l₂ := rfl theorem eq_tree_leaf_node (a₁ : A) (l₂ : tree_list A) : eq_tree (leaf a₁) (node l₂) = false := rfl theorem eq_tree_node_leaf (l₁ : tree_list A) (a₂ : A) : eq_tree (node l₁) (leaf a₂) = false := rfl theorem eq_tree_list_nil : eq_tree_list (nil A) (nil A) = true := rfl theorem eq_tree_list_cons (t₁ t₂ : tree A) (l₁ l₂ : tree_list A) : eq_tree_list (cons t₁ l₁) (cons t₂ l₂) = (eq_tree t₁ t₂ ∧ eq_tree_list l₁ l₂) := rfl theorem eq_tree_list_cons_nil (t : tree A) (l : tree_list A) : eq_tree_list (cons t l) (nil A) = false := rfl theorem eq_tree_list_nil_cons (t : tree A) (l : tree_list A) : eq_tree_list (nil A) (cons t l) = false := rfl end tree