import data.nat.basic data.bool open bool nat eq.ops reducible nat.rec_on definition is_eq (a b : nat) : bool := nat.rec_on a (λ b, nat.cases_on b tt (λb₁, ff)) (λ a₁ r₁ b, nat.cases_on b ff (λb₁, r₁ b₁)) b example : is_eq 3 3 = tt := rfl example : is_eq 3 5 = ff := rfl theorem eq.to_is_eq (a b : nat) (H : a = b) : is_eq a b = tt := have aux : is_eq a a = tt, from nat.induction_on a rfl (λ (a₁ : nat) (ih : is_eq a₁ a₁ = tt), ih), H ▸ aux theorem is_eq.to_eq (a b : nat) : is_eq a b = tt → a = b := nat.induction_on a (λb, nat.cases_on b (λh, rfl) (λb₁ H, absurd H !ff_ne_tt)) (λa₁ (ih : ∀b, is_eq a₁ b = tt → a₁ = b) (b : nat), nat.cases_on b (λ (H : is_eq (succ a₁) zero = tt), absurd H !ff_ne_tt) (λb₁ (H : is_eq (succ a₁) (succ b₁) = tt), have aux : a₁ = b₁, from ih b₁ H, aux ▸ rfl)) b