/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: init.sigma Author: Leonardo de Moura, Jeremy Avigad, Floris van Doorn -/ prelude import init.datatypes init.num init.wf init.logic init.tactic definition dpair := @sigma.mk notation `Σ` binders `,` r:(scoped P, sigma P) := r -- notation for n-ary tuples; input ⟨ ⟩ as \< \> notation `⟨`:max t:(foldr `,` (e r, sigma.mk e r)) `⟩`:0 := t namespace sigma notation `pr₁` := pr1 notation `pr₂` := pr2 namespace ops postfix `.1`:(max+1) := pr1 postfix `.2`:(max+1) := pr2 end ops open ops well_founded section variables {A : Type} {B : A → Type} variable (Ra : A → A → Prop) variable (Rb : ∀ a, B a → B a → Prop) -- Lexicographical order based on Ra and Rb inductive lex : sigma B → sigma B → Prop := left : ∀{a₁ b₁} a₂ b₂, Ra a₁ a₂ → lex ⟨a₁, b₁⟩ ⟨a₂, b₂⟩, right : ∀a {b₁ b₂}, Rb a b₁ b₂ → lex ⟨a, b₁⟩ ⟨a, b₂⟩ end context parameters {A : Type} {B : A → Type} parameters {Ra : A → A → Prop} {Rb : Π a : A, B a → B a → Prop} infix `≺`:50 := lex Ra Rb definition lex.accessible {a} (aca : acc Ra a) (acb : ∀a, well_founded (Rb a)) : ∀ (b : B a), acc (lex Ra Rb) ⟨a, b⟩ := acc.rec_on aca (λxa aca (iHa : ∀y, Ra y xa → ∀b : B y, acc (lex Ra Rb) ⟨y, b⟩), λb : B xa, acc.rec_on (acb xa b) (λxb acb (iHb : ∀ (y : B xa), Rb xa y xb → acc (lex Ra Rb) ⟨xa, y⟩), acc.intro ⟨xa, xb⟩ (λp (lt : p ≺ ⟨xa, xb⟩), have aux : xa = xa → xb == xb → acc (lex Ra Rb) p, from @lex.rec_on A B Ra Rb (λp₁ p₂, p₂.1 = xa → p₂.2 == xb → acc (lex Ra Rb) p₁) p ⟨xa, xb⟩ lt (λ (a₁ : A) (b₁ : B a₁) (a₂ : A) (b₂ : B a₂) (H : Ra a₁ a₂) (eq₂ : a₂ = xa) (eq₃ : b₂ == xb), begin cases eq₂, exact (iHa a₁ H b₁) end) (λ (a : A) (b₁ b₂ : B a) (H : Rb a b₁ b₂) (eq₂ : a = xa) (eq₃ : b₂ == xb), begin cases eq₂, cases eq₃, exact (iHb b₁ H) end), aux rfl !heq.refl))) -- The lexicographical order of well founded relations is well-founded definition lex.wf (Ha : well_founded Ra) (Hb : ∀ x, well_founded (Rb x)) : well_founded (lex Ra Rb) := well_founded.intro (λp, destruct p (λa b, lex.accessible (Ha a) Hb b)) end end sigma