/- Copyright (c) 2015 Nathaniel Thomas. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nathaniel Thomas, Jeremy Avigad Modules and vector spaces over a ring. -/ import algebra.field structure has_scalar [class] (F V : Type) := (smul : F → V → V) infixl ` • `:73 := has_scalar.smul /- modules over a ring -/ structure left_module [class] (R M : Type) [ringR : ring R] extends has_scalar R M, add_comm_group M := (smul_distrib_left : ∀ (r : R) (x y : M), smul r (add x y) = (add (smul r x) (smul r y))) (smul_distrib_right : ∀ (r s : R) (x : M), smul (ring.add r s) x = (add (smul r x) (smul s x))) (smul_mul : ∀ r s x, smul (mul r s) x = smul r (smul s x)) (smul_one : ∀ x, smul one x = x) section left_module variables {R M : Type} variable [ringR : ring R] variable [moduleRM : left_module R M] include ringR moduleRM -- Note: the anonymous include does not work in the propositions below. proposition smul_distrib_left (a : R) (u v : M) : a • (u + v) = a • u + a • v := !left_module.smul_distrib_left proposition smul_distrib_right (a b : R) (u : M) : (a + b)•u = a•u + b•u := !left_module.smul_distrib_right proposition smul_mul (a : R) (b : R) (u : M) : (a * b) • u = a • (b • u) := !left_module.smul_mul proposition one_smul (u : M) : (1 : R) • u = u := !left_module.smul_one proposition zero_smul (u : M) : (0 : R) • u = 0 := have (0 : R) • u + 0 • u = 0 • u + 0, by rewrite [-smul_distrib_right, *add_zero], !add.left_cancel this proposition smul_zero (a : R) : a • (0 : M) = 0 := have a • 0 + a • 0 = a • 0 + 0, by rewrite [-smul_distrib_left, *add_zero], !add.left_cancel this proposition neg_smul (a : R) (u : M) : (-a) • u = - (a • u) := eq_neg_of_add_eq_zero (by rewrite [-smul_distrib_right, add.left_inv, zero_smul]) proposition neg_one_smul (u : M) : -(1 : R) • u = -u := by rewrite [neg_smul, one_smul] end left_module /- linear maps -/ structure is_linear_map [class] (R : Type) {M₁ M₂ : Type} [smul₁ : has_scalar R M₁] [smul₂ : has_scalar R M₂] [add₁ : has_add M₁] [add₂ : has_add M₂] (T : M₁ → M₂) := (additive : ∀ u v : M₁, T (u + v) = T u + T v) (homogeneous : ∀ a : R, ∀ u : M₁, T (a • u) = a • T u) proposition linear_map_additive (R : Type) {M₁ M₂ : Type} [smul₁ : has_scalar R M₁] [smul₂ : has_scalar R M₂] [add₁ : has_add M₁] [add₂ : has_add M₂] (T : M₁ → M₂) [linT : is_linear_map R T] (u v : M₁) : T (u + v) = T u + T v := is_linear_map.additive smul₁ smul₂ _ _ T u v proposition linear_map_homogeneous {R M₁ M₂ : Type} [smul₁ : has_scalar R M₁] [smul₂ : has_scalar R M₂] [add₁ : has_add M₁] [add₂ : has_add M₂] (T : M₁ → M₂) [linT : is_linear_map R T] (a : R) (u : M₁) : T (a • u) = a • T u := is_linear_map.homogeneous smul₁ smul₂ _ _ T a u proposition is_linear_map_id [instance] (R : Type) {M : Type} [smulRM : has_scalar R M] [has_addM : has_add M] : is_linear_map R (id : M → M) := is_linear_map.mk (take u v, rfl) (take a u, rfl) section is_linear_map variables {R M₁ M₂ : Type} variable [ringR : ring R] variable [moduleRM₁ : left_module R M₁] variable [moduleRM₂ : left_module R M₂] include ringR moduleRM₁ moduleRM₂ variable T : M₁ → M₂ variable [is_linear_mapT : is_linear_map R T] include is_linear_mapT proposition linear_map_zero : T 0 = 0 := calc T 0 = T ((0 : R) • 0) : zero_smul ... = (0 : R) • T 0 : linear_map_homogeneous T ... = 0 : zero_smul proposition linear_map_neg (u : M₁) : T (-u) = -(T u) := by rewrite [-neg_one_smul, linear_map_homogeneous T, neg_one_smul] proposition linear_map_smul_add_smul (a b : R) (u v : M₁) : T (a • u + b • v) = a • T u + b • T v := by rewrite [linear_map_additive R T, *linear_map_homogeneous T] end is_linear_map /- vector spaces -/ structure vector_space [class] (F V : Type) [fieldF : field F] extends left_module F V /- an example -/ section variables (F V : Type) variables [field F] [vector_spaceFV : vector_space F V] variable T : V → V variable [is_linear_map F T] include vector_spaceFV example (a b : F) (u v : V) : T (a • u + b • v) = a • T u + b • T v := !linear_map_smul_add_smul end